Categories
Bibliography DevOps Java Kubernetes Software Engineering Spring Framework

Continuous Delivery for Java Apps: Build a CD Pipeline Step by Step Using Kubernetes, Docker, Vagrant, Jenkins, Spring, Maven and Artifactory – B078B3FJ7J, 2017

See: Continuous Delivery for Java Apps: Build a CD Pipeline Step by Step Using Kubernetes, Docker, Vagrant, Jenkins, Spring, Maven and Artifactory, Publisher ‏ : ‎ Leanpub (December 14, 2017)

See also: Spring Bibliography, Spring Framework and Cloud Native

Fair Use Source:

This book will guide you through the implementation of the real-world Continuous Delivery using top-notch technologies. Instead of finishing this book thinking “I know what Continuous Delivery is, but I have no idea how to implement it”, you will end up with your machine set up with a Kubernetes cluster running Jenkins Pipelines in a distributed and scalable fashion (each Pipeline run on a new Jenkins slave dynamically allocated as a Kubernetes pod) to test (unit, integration, acceptance, performance and smoke tests), build (with Maven), release (to Artifactory), distribute (to Docker Hub) and deploy (on Kubernetes) a Spring Boot app to testing, staging and production environments implementing the Canary Release deployment pattern.

TABLE OF CONTENTS:

INTRODUCTION
Agile
Scrum
Scrum and Continuous Integration
Deployed vs Released
Scrum and Continuous Delivery
XP and Continuous Delivery
Automated Tests
Continuous Integration
Feature Branch
Continuous Delivery
Continuous Delivery Pipeline
Continuous Delivery vs Continuous Deployment
Canary Release
A/B Tests
Feature Flags

NOTEPAD APP: AUTOMATED TESTS, MAVEN AND FLYWAY
Pre-Requisites
The Notepad Application
Automated Tests
Unit Tests
Integration Tests
 Acceptance Tests
  Page Object
  Distributed Acceptance Tests with Selenium-Grid
 Smoke Tests
 Performance Tests with Gatling.io
Apache Maven
Maven Snapshot vs Release
The Default Lifecycle and its Phases
Maven Repositories
Repository Manager (Artifactory)
Maven Plugins: Surefire and Failsafe
Maven Profile
Running Unit Tests
Running Integration Tests
Running Acceptance Tests
Running Smoke Tests
Running Performance Tests
Publish Artifacts to Artifactory with Maven
Publish a Snapshot to Artifactory
Publish a Release to Artifactory
The release:prepare Goal
The release:perform Goal
 Flyway

DOCKER
Introduction to Docker
Difference Between Container and Image
Docker Hub
Create your Account
Official Docker Repositories
Image Tags
Non-Official Docker Images
Create a Repository, an Image and Push it to Docker Hub
 Running Containers on Docker
  Running Containers as Daemons
  Container Clean Up
  Naming Containers
  Exposing Ports
  Persistent Data with Volumes
  Environment Variables
Docker Networking
  Create a Bridge Network
  Container Static IP Address
  Linking Containers
 Most Used Docker Commands
  Images
  Containers
  Misc
 Building Docker Images: Dockerfile

JENKINS: PIPELINE AS CODE AND CHATOPS
 Jenkins Overview
 Jenkins Concepts
  Job (or Project)
  Build
  Artifact
  Workspace
  Executor
  Plugin
  Node, Master, and Agent (or Slave)
 ChatOps
  Create a Slack Workspace
  Integrate Slack with Jenkins
  Slack Notification Plugin
  Use Hubot to Interact with Jenkins
 Jenkins Pipeline
  Declarative Pipeline vs Scripted Pipeline
  Scripted Pipeline
  Using Docker with Jenkins Pipelines
  Running Docker from Within the Jenkins Container
Scaling Jenkins with Slaves

KUBERNETES
 Why Kubernetes?
 Set up a Kubernetes Cluster using Vagrant
 Hands-on Introduction to Kubernetes
 Kubernetes Concepts
  Namespaces
  Pods
  Labels
  Replica Sets
  Services
  Service Discovery using DNS
  Service Discovery using Namespaces
  Volumes
  Handling External Configurations
  Config Maps
  Changing Logback Log Level at Runtime
  Secrets
  Using Secrets as Environment Variables
  Using Secrets as Files from a Pod
  Deployments
  Readiness Probes
  Liveness Probes
  Canary Release
Kubernetes Architecture
Kubernetes Master Components
Etcd
API Server
Controller Manager
Scheduler
 Kubernetes Node Components
  Service Proxy
  Kubelet
  cAdvisor
 Kubernetes Add-ons
  Web UI (Dashboard)
   Monitoring Kubernetes with Heapster, InfluxDB and Grafana
   Web UI Overview
  DNS

HANDS-ON PROJECT

APPENDICES

Categories
Bibliography DevOps Software Engineering

B08711ZCPY ISBN-13: 978-1680506716

See: A Scrum Book: The Spirit of the Game 1st Edition, Publisher ‏ : ‎ Pragmatic Bookshelf; 1st edition (September 10, 2019)

Fair Use Source:

Categories
Bibliography DevOps Software Engineering

B019PFBM3O ISBN-13: 978-0133853629

See: Scrum Field Guide, The: Agile Advice for Your First Year and Beyond (Addison-Wesley Signature Series (Cohn)) 2nd Edition, Publisher ‏ : ‎ Addison-Wesley Professional; 2nd edition (December 22, 2015)

Fair Use Source:

Categories
Bibliography DevOps Software Engineering

B075H2PS8M ISBN-13: 978-1119348900

See: Project Management For Dummies (For Dummies (Lifestyle)) 5th Edition, Publisher ‏ : ‎ For Dummies; 5th edition (September 25, 2017)

Fair Use Source:

Categories
Bibliography DevOps Software Engineering

B07C8519BW ISBN-13: 978-1119467649

See: Scrum For Dummies (For Dummies (Computers)) 2nd Edition, Publisher : ‎ For Dummies; 2nd edition (May 15, 2018)

Fair Use Source:

Categories
Bibliography DevOps Software Engineering

B00PJ8YKRM ISBN-13: 978-1449331924

See: Learning Agile: Understanding Scrum, XP, Lean, and Kanban 1st Edition

Fair Use Source:

Categories
Bibliography DevOps Software Engineering

B008NAKA5O ISBN-13: 978-0137043293

See: Essential Scrum: A Practical Guide to the Most Popular Agile Process (Addison-Wesley Signature Series (Cohn)) 1st Edition

Fair Use Source:

Categories
Bibliography DevOps Software Engineering

B00JI54HCU ISBN-13: 978-1847941107

See: Scrum: The Art of Doing Twice the Work in Half the Time

Fair Use Source:

Categories
Cloud DevOps DevSecOps-Security-Privacy Linux Software Engineering

DevOps toolchain

See also: CloudOps, toolchain

“A DevOps toolchain is a set or combination of tools that aid in the delivery, development, and management of software applications throughout the systems development life cycle, as coordinated by an organization that uses DevOps practices.

Generally, DevOps tools fit into one or more activities, which supports specific DevOps initiatives: Plan, Create, Verify, Package, Release, Configure, Monitor, and Version Control.[1][2]” (WP)

Toolchains

“In software, a toolchain is the set of programming tools that is used to perform a complex software development task or to create a software product, which is typically another computer program or a set of related programs. In general, the tools forming a toolchain are executed consecutively so the output or resulting environment state of each tool becomes the input or starting environment for the next one, but the term is also used when referring to a set of related tools that are not necessarily executed consecutively.[3][4][5]

As DevOps is a set of practices that emphasizes the collaboration and communication of both software developers and other information technology (IT) professionals, while automating the process of software delivery and infrastructure changes, its implementation can include the definition of the series of tools used at various stages of the lifecycle; because DevOps is a cultural shift and collaboration between development and operations, there is no one product that can be considered a single DevOps tool. Instead a collection of tools, potentially from a variety of vendors, are used in one or more stages of the lifecycle.[6][7]” (WP)

Stages of DevOps

Further information: DevOps

Plan

Plan is composed of two things: “define” and “plan”.[8] This activity refers to the business value and application requirements. Specifically “Plan” activities include:

  • Production metrics, objects and feedback
  • Requirements
  • Business metrics
  • Update release metrics
  • Release plan, timing and business case
  • Security policy and requirement

A combination of the IT personnel will be involved in these activities: business application owners, software developmentsoftware architects, continual release management, security officers and the organization responsible for managing the production of IT infrastructure.

Create

Create is composed of the building (see also build automation), coding, and configuring of the software development process.[8] The specific activities are:

Tools and vendors in this category often overlap with other categories. Because DevOps is about breaking down silos, this is reflective in the activities and product solutions.[clarification needed]

Verify

Verify is directly associated with ensuring the quality of the software release; activities designed to ensure code quality is maintained and the highest quality is deployed to production.[8] The main activities in this are:

Solutions for verify related activities generally fall under four main categories: Test automation , Static analysis , Test Lab, and Security.

Packaging

Packaging refers to the activities involved once the release is ready for deployment, often also referred to as staging or Preproduction / “preprod”.[8] This often includes tasks and activities such as:

  • Approval/preapprovals
  • Package configuration
  • Triggered releases
  • Release staging and holding

Release

Release related activities include schedule, orchestration, provisioning and deploying software into production and targeted environment.[9] The specific Release activities include:

  • Release coordination
  • Deploying and promoting applications
  • Fallbacks and recovery
  • Scheduled/timed releases

Solutions that cover this aspect of the toolchain include application release automation, deployment automation and release management.

Configure

Configure activities fall under the operation side of DevOps. Once software is deployed, there may be additional IT infrastructure provisioning and configuration activities required.[8] Specific activities including:

  • Infrastructure storage, database and network provisioning and configuring
  • Application provision and configuration.

The main types of solutions that facilitate these activities are continuous configuration automationconfiguration management, and infrastructure as code tools.[10]

Monitor

Monitoring is an important link in a DevOps toolchain. It allows IT organization to identify specific issues of specific releases and to understand the impact on end-users.[8] A summary of Monitor related activities are:

  • Performance of IT infrastructure
  • End-user response and experience
  • Production metrics and statistics

Information from monitoring activities often impacts Plan activities required for changes and for new release cycles.

Version Control

Version Control is an important link in a DevOps toolchain and a component of software configuration management. Version Control is the management of changes to documents, computer programs, large web sites, and other collections of information.[8] A summary of Version Control related activities are:

  • Non-linear development
  • Distributed development
  • Compatibility with existent systems and protocols
  • Toolkit-based design

Information from Version Control often supports Release activities required for changes and for new release cycles.

See also

References

  1. ^ Edwards, Damon. “Integrating DevOps tools into a Service Delivery Platform”dev2ops.org.
  2. ^ Seroter, Richard. “Exploring the ENTIRE DevOps Toolchain for (Cloud) Teams”infoq.com.
  3. ^ “Toolchain Overview”nongnu.org. 2012-01-03. Retrieved 2013-10-21.
  4. ^ “Toolchains”elinux.org. 2013-09-08. Retrieved 2013-10-21.
  5. ^ Imran, Saed; Buchheit, Martin; Hollunder, Bernhard; Schreier, Ulf (2015-10-29). Tool Chains in Agile ALM Environments: A Short IntroductionLecture Notes in Computer Science9416. pp. 371–380. doi:10.1007/978-3-319-26138-6_40ISBN 978-3-319-26137-9.
  6. ^ Loukides, Mike (2012-06-07). “What is DevOps?”.
  7. ^ Garner Market Trends: DevOps – Not a Market, but Tool-Centric Philosophy That supports a Continuous Delivery Value Chain (Report). Gartner. 18 February 2015.
  8. a b c d e f g Avoid Failure by Developing a Toolchain that Enables DevOps (Report). Gartner. 16 March 2016.
  9. ^ Best Practices in Change, Configuration and Release Management (Report). Gartner. 14 July 2010.
  10. ^ Roger S. Pressman (2009). Software Engineering: A Practitioner’s Approach (7th International ed.). New York: McGraw-Hill.

Categories

Sources:

Fair Use Sources:

Categories
Cloud DevOps History Software Engineering

Kanban Software Development

Return to Timeline of the History of Computers, Networking

Kanban (Japanese 看板, signboard or billboard) is a lean method to manage and improve work across human systems. This approach aims to manage work by balancing demands with available capacity, and by improving the handling of system-level bottlenecks.

Work items are visualized to give participants a view of progress and process, from start to finish—usually via a Kanban board. Work is pulled as capacity permits, rather than work being pushed into the process when requested.

In knowledge work and in software development, the aim is to provide a visual process management system which aids decision-making about what, when, and how much to produce. The underlying Kanban method originated in lean manufacturing,[1] which was inspired by the Toyota Production System.[2] Kanban is commonly used in software development in combination with other methods and frameworks such as Scrum.[3]

Fair Use Sources:

Categories
Cloud DevOps History Software Engineering

Scrum Software Development

Return to Timeline of the History of Computers, Networking

Scrum is an agile framework for developing, delivering, and sustaining complex products,[1] with an initial emphasis on software development, although it has been used in other fields including research, sales, marketing and advanced technologies.[2] It is designed for teams of ten or fewer members, who break their work into goals that can be completed within timeboxed iterations, called sprints, no longer than one month and most commonly two weeks. The Scrum Team track progress in 15-minute time-boxed daily meetings, called daily scrums. At the end of the sprint, the team holds sprint review, to demonstrate the work done, and sprint retrospective to improve continuously.

Fair Use Sources:

Categories
Cloud DevOps History Software Engineering

Project Management

Return to Timeline of the History of Computers, Networking

Project management is the process of leading the work of a team to achieve goals and meet success criteria at a specified time. The primary challenge of project management is to achieve all of the project goals within the given constraints.[1] This information is usually described in project documentation, created at the beginning of the development process. The primary constraints are scope, time, quality, and budget.[2] The secondary challenge is to optimize the allocation of necessary inputs and apply them to meet pre-defined objectives.

The objective of project management is to produce a complete project which complies with the client’s objectives. In many cases the objective of project management is also to shape or reform the client’s brief to feasibly address the client’s objectives. Once the client’s objectives are clearly established they should influence all decisions made by other people involved in the project – for example project managers, designers, contractors and sub-contractors. Ill-defined or too tightly prescribed project management objectives are detrimental to decision making.

project is a temporary endeavor designed to produce a unique product, service or result with a defined beginning and end (usually time-constrained, and often constrained by funding or staffing) undertaken to meet unique goals and objectives, typically to bring about beneficial change or added value.[3][4] The temporary nature of projects stands in contrast with business as usual (or operations),[5] which are repetitive, permanent, or semi-permanent functional activities to produce products or services. In practice, the management of such distinct production approaches requires the development of distinct technical skills and management strategies.[6]

Fair Use Sources:

Categories
Cloud DevOps

12 Factor App – Twelve-Factor Applications

12 factor app (twelve-factor app) – “Twelve-factor app is a methodology for building distributed applications that run in the cloud and are delivered as a service.” Fair Use Source: 809137