Artificial Intelligence Cloud Data Science - Big Data Hardware and Electronics History Networking Operating Systems Software Engineering

Timeline of the History of Computers

Return to History or This Year in History

c. 2500 BC – Sumerian Abacus

c. 700 BC – Scytale

c. 150 BC – Antikythera Mechanism

c. 60 – Programmable Robot

c. 850 – On Deciphering Cryptographic Messages

c. 1470 – Cipher Disk

1613 – First Recorded Use of the Word Computer

1621 – Slide Rule

1703 – Binary Arithmetic

1758 – Human Computers Predict Halley’s Comet

1770 – The “Mechanical Turk”

1792 – Optical Telegraph

1801 – The Jacquard Loom

1822 – The Difference Engine

1833 – Michael Faraday discovered silver sulfide became a better conductor when heated

1836 – Electrical Telegraph

1843 – Ada Lovelace Writes a Computer Program

1843 – Fax Machine Patented

1843 – Edgar Allan Poe’s “The Gold-Bug”

1849 to early 1900s – Silicon Valley After the Gold Rush

1851 – Thomas Arithmometer

1854 – Boolean Algebra

1864 – First Electromagnetic Spam Message

1870 – Mitsubishi founded

1874 – Baudot Code

1874 – Semiconductor Diode conceived of

1876 – Ericsson Corporation founded in Sweden

1885 – Stanford University

1885 – William Burroughs’ adding machine

1890 – Herman Hollerith Tabulating the US Census

1890 – Toshiba founded in Japan

1891 – Strowger Step-by-Step Switch

1898 – Nippon Electric Limited Partnership – NEC Corporation founded in Japan

1890s to 1930s – Radio Engineering

Early 1900s – Electrical Engineering

1904 – “Diode” or Two-Element Amplifier actually invented

1904 – Three-Element Amplifier or “Triode”

1906 – Vacuum Tube or “Audion”

1907 – Lee DeForest coins the term “radio” to refer to wireless transmission when he formed his DeForest Radio Telephone Company

1909 – Charles Herrold in San Jose started first radio station in USA with regularly scheduled programming, including songs, using an arc transmitter of his own design. Herrold was one of Stanford’s earliest students and founded his own College of Wireless and Engineering in San Jose

1910 – Radio Broadcasting business pioneered by Lee DeForest with broadcast from New York of a live performance by Italian tenor Enrico Caruso

1910 – Hitachi founded in Japan

1912 – Sharp Corporation founded in Japan and takes its name from one of its founder’s first inventions, the Ever-Sharp mechanical pencil

1914 – Floating-Point Numbers

1917 – Vernam Cipher

1918 – Panasonic, then Matsushita Electric, founded in Japan

1920 – Rossum’s Universal Robots

1927 – Fritz Lang’s Metropolis

1927 – First LED

1928 – Electronic Speech Synthesis

1930 – The Enigma Machine

1931 – Differential Analyzer

1935 – Fujitsu founded as Fuji Telecommunications Equipment Manufacturing in Japan. Fujitsu is the second oldest IT company after IBM and before Hewlett-Packard

1936 – Church-Turing Thesis

1939 – Hewlett-Packard founded in a one-car garage in Palo Alto, California by Bill Hewlett and David Packard

1939 – Toshiba founded in Japan

1941Z3 Computer

1942Atanasoff-Berry Computer

1942 – Isaac Asimov’s Three Laws of Robotics

1942Seiko Corporation founded in Japan



1944Delay Line Memory

1944Binary-Coded Decimal

1945Vannevar Bush‘s “As We May Think

1945EDVAC First Draft Report – The von Neumann architecture

1946 – Trackball

1946 – Williams Tube Random Access Memory

1947 – Actual Bug Found – First “debugging”

1947 – William Shockley’s Silicon Transistor

1948 – The Bit – Binary Digit 0 or 1

1948 – Curta Calculator

1948 – Manchester SSEM

1949 – Whirlwind Computer

1950 – Error-Correcting Codes (ECC)

1951 – Turing Test of Artificial Intelligence (AI)

1951 – Magnetic Tape Used for Computers

1951 – Core Memory

1951 – Microprogramming

1952 – Computer Speech Recognition

1953 – First Transistorized Computer

1955 – Artificial Intelligence (AI) Coined

1955 – Computer Proves Mathematical Theorem

1956 – First Disk Storage Unit

1956 – The Byte

1956 – Robby the Robot from Forbidden Planet

1957 – FORTRAN Programming Language

1957 – First Digital Image

1958 – The Bell 101 Modem

1958 – SAGE Computer Operational

1959 – IBM 1401 Computer

1959 – DEC PDP-1

1959 – Quicksort Algorithm

1959 – SABRE Airline Reservation System

1960 – COBOL Programming Language

1960 – Recommended Standard 232 (RS-232)

1961 – ANITA Electronic Calculator

1961 – Unimate – First Mass-Produced Robot

1961 – Time-Sharing – The Original “Cloud Computing

1961 – Shinshu Seiki Company founded in Japan (now called Seiko Epson Corporation) as a subsidiary of Seiko to supply precision parts for Seiko watches.

1962 – Spacewar! Video Game

1962 – Virtual Memory

1962 – Digital Long Distance Telephone Calls

1963 – Sketchpad Interactive Computer Graphics

1963 – ASCII Character Encoding

1963 – Seiko Corporation in Japan developed world’s first portable quartz timer (Seiko QC-951)

1964 – RAND Tablet Computer

1964 – Teletype Model 33 ASR

1964 – IBM System/360 Mainframe Computer

1964 – BASIC Programming Language

1965 – First Liquid-Crystal Display (LCD)

1965 – Fiber Optics – Optical-Fiber

1965 – DENDRAL Artificial Intelligence (AI) Research Project

1965 – ELIZA – The First “Chatbot” – 1965

1965 – Touchscreen

1966 – Star Trek Premieres

1966 – Dynamic RAM

1966 – Linear predictive coding (LPC) proposed by Fumitada Itakura of Nagoya University and Shuzo Saito of Nippon Telegraph and Telephone (NTT).[71]

1967 – Object-Oriented Programming

1967 – First ATM Machine

1967 – Head-Mounted Display

1967 – Programming for Children

1967 – The Mouse

1968 – Carterfone Decision

1968 – Software Engineering

1968 – HAL 9000 Computer from 2001: A Space Odyssey

1968 – First “Spacecraft” “Guided by Computer”

1968 – Cyberspace Coined—and Re-Coined

1968 – Mother of All Demos

1968 – Dot Matrix Printer – Shinshu Seiki (now called Seiko Epson Corporation) launched the world’s first mini-printer, the EP-101 (“EP” for Electronic Printer,) which was soon incorporated into many calculators

1968 – Interface Message Processor (IMP)

1969 – ARPANET / Internet

1969 – Digital Imaging

1969 – Network Working Group Request for Comments (RFC): 1

1969 – Utility Computing – Early “Cloud Computing

1969 – Perceptrons Book – Dark Ages of Neural Networks Artificial Intelligence (AI)

1969 – UNIX Operating System

1969 – Seiko Epson Corporation in Japan developed world’s first quartz watch timepiece (Seiko Quartz Astron 35SQ)

1970 – Fair Credit Reporting Act

1970 – Relational Databases

1970 – Floppy Disk

1971 – Laser Printer

1971 – NP-Completeness

1971 – @Mail Electronic Mail

1971 – First Microprocessor – General-Purpose CPU – “Computer on a Chip”

1971 – First Wireless Network

1972 – C Programming Language

1972 – Cray Research Supercomputers – High-Performance Computing (HPC)

1972 – Game of Life – Early Artificial Intelligence (AI) Research

1972 – HP-35 Calculator

1972 – Pong Game from Atari – Nolan Bushnell

1973 – First Cell Phone Call

1973 – Danny Cohen first demonstrated a form of packet voice as part of a flight simulator application, which operated across the early ARPANET.[69][70]

1973 – Xerox Alto from Xerox Palo Alto Research Center (PARC)

1973 – Sharp Corporation produced the first LCD calculator

1974 – Data Encryption Standard (DES)

1974 – The Institute of Electrical and Electronics Engineers (IEEE) publishes a paper entitled “A Protocol for Packet Network Interconnection”.[82]

1974 – Network Voice Protocol (NVP) tested over ARPANET in August 1974, carrying barely audible 16 kpbs CVSD encoded voice.[71]

1974 – The first successful real-time conversation over ARPANET achieved using 2.4 kpbs LPC, between Culler-Harrison Incorporated in Goleta, California, and MIT Lincoln Laboratory in Lexington, Massachusetts.[71]

1974 – First Personal Computer: The Altair 8800 Invented by MITS in Albuquerque, New Mexico

1975 – Colossal Cave Adventure – Text-based “Video” Game

1975 – The Shockwave Rider SciFi Book – A Prelude of the 21st Century Big Tech Police State

1975 – AI Medical Diagnosis – Artificial Intelligence in Medicine

1975 – BYTE Magazine

1975 – Homebrew Computer Club

1975 – The Mythical Man-Month

1975 – The name Epson was coined for the next generation of printers based on the EP-101 which was released to the public. (EPSON:E-P-SON: SON of Electronic Printer).[7] Epson America Inc. was established to sell printers for Shinshu Seiki Co.

1976 – Public Key Cryptography

1976 – Acer founded

1976 – Tandem NonStop

1976 – Dr. Dobb’s Journal

1977 – RSA Encryption

1977 – Apple II Computer

The TRS-80 Model I pictured alongside the Apple II and the Commodore PET 2001-8. These three computers constitute what Byte Magazine called the “1977 Trinity” of home computing.

1977 – Danny Cohen and Jon Postel of the USC Information Sciences Institute, and Vint Cerf of the Defense Advanced Research Projects Agency (DARPA), agree to separate IP from TCP, and create UDP for carrying real-time traffic.

1978 – First Internet Spam Message

1978 – France’s Minitel Videotext

1979 – Secret Sharing for Encryption

1979 – Dan Bricklin Invents VisiCalc Spreadsheet

1980 – Timex Sinclair ZX80 Computer

1980 – Flash Memory

1980 – RISC Microprocessors – Reduced Instruction Set Computer CPUs

1980 – Commercially Available Ethernet Invented by Robert Metcalfe of 3Com

1980 – Usenet

1981 – IBM Personal Computer – IBM PC

1981 – Simple Mail Transfer Protocol (SMTP) Email

1981 – Japan’s Fifth Generation Computer SystemsJapan

1982 – Sun Microsystems was founded on February 24, 1982.[2]

1982 – AutoCAD

1982 – First Commercial UNIX Workstation

1982 – PostScript

1982 – Microsoft and the IBM PC Clones

1982 – First CGI Sequence in Feature Film – Star Trek II: The Wrath of Khan

1982 – National Geographic Moves the Pyramids – Precursor to Photoshop

1982 – Secure Multi-Party Computation

1982 – TRON Movie

1982 – Home Computer Named Machine of the Year by Time Magazine

1983 – The Qubit – Quantum Computers

1983 – WarGames

1983 – 3-D Printing

1983 – Computerization of the Local Telephone Network

1983 – First Laptop

1983 – MIDI Computer Music Interface

1983 – Microsoft Word

1983 – Nintendo Entertainment System – Video Games

1983 – Domain Name System (DNS)

1983 – IPv4 Flag Day – TCP/IP

1984 – Text-to-Speech (TTS)

1984 – Apple Macintosh

1984 – VPL Research, Inc. – Virtual Reality (VR)

1984 – Quantum Cryptography

1984 – Telebit TrailBlazer Modems Break 9600 bps

1984 – Verilog Language

1984 – Dell founded by Michael Dell

1984 – Cisco Systems was founded in December 1984

1985 – Connection Machine – Parallelization

1985 – First Computer-Generated TV Host – Max HeadroomCGI

1985 – Zero-Knowledge Mathematical Proofs

1985 – FCC Approves Unlicensed Wireless Spread Spectrum

1985 – NSFNET National Science Foundation “Internet”

1985 – Desktop Publishing – with Macintosh, Aldus PageMaker, LaserJet, LaserWriter and PostScript

1985 – Field-Programmable Gate Array (FPGA)

1985 – GNU Manifesto from Richard Stallman

1985 – AFIS Stops a Serial Killer – Automated Fingerprint Identification System

1986 – Software Bug Fatalities

1986 – Pixar Animation Studios

1986 – D-Link Corporation founded in Taipei, Taiwan

1987 – Digital Video Editing

1987 – GIF – Graphics Interchange Format

1988 – MPEG – Moving Picture Experts Group – Coding-Compressing Audio-Video

1988 – CD-ROM

1988 – Morris Worm Internet Computer Virus

1988 – Linksys founded

1989 – World Wide Web-HTML-HTTP Invented by Tim Berners-Lee

1989 – Asus was founded in Taipei, Taiwan

1989 – SimCity Video Game

1989 – ISP Provides Internet Access to the Public

1990 – GPS Is Operational – Global Positioning System

1990 – Digital Money is Invented – DigiCash – Precursor to Bitcoin

1991 – Pretty Good Privacy (PGP)

1991 – DARPA’s Report “Computers at Risk: Safe Computing in the Information Age

1991 – Linux Kernel Operating System Invented by Linus Torvalds

1992 – Boston Dynamics Robotics Company Founded

1992 – JPEG – Joint Photographic Experts Group

1992 – First Mass-Market Web Browser NCSA Mosaic Invented by Marc Andreessen

1992 – Unicode Character Encoding

1993 – Apple Newton

1994 – First Banner Ad – Wired Magazine

1994 – RSA-129 Encryption Cracked

1995 – DVD

1995 – E-Commerce Startups – eBay, Amazon and DoubleClick Launched

1995 – AltaVista Web Search Engine

1995 – Gartner Hype Cycle

1996 – Universal Serial Bus (USB)

1996 – Juniper Networks founded

1997 – IBM Computer Is World Chess Champion

1997 – PalmPilot

1997 – E Ink

1998 – Diamond Rio MP3 Player

1998 – Google

1999 – Collaborative Software Development

1999 – Blog Is Coined

1999 – Napster P2P Music and File Sharing

2000 – USB Flash Drive

2000 – Sharp Corporation’s Mobile Communications Division created the world’s first commercial camera phone, the J-SH04, in Japan

2000 – Fortinet founded

2001 – Wikipedia

2001 – Apple iTunes

2001 – Advanced Encryption Standard (AES)

2001 – Quantum Computer Factors “15”

2002 – Home-Cleaning Robot

2003 – CAPTCHA

2004 – Product Tracking

2004 – Facebook

2004 – First International Meeting on Synthetic Biology

2005 – Video Game Enables Research into Real-World Pandemics

2006 – Apache Hadoop Makes Big Data Possible

2006 – Differential Privacy

2007 – Apple iPhone

2008 – Bitcoin

2010 – Air Force Builds Supercomputer with Gaming Consoles

2010 – Cyber Weapons

2011 – Smart Homes via the Internet of Things (IoT)

2011 – IBM Watson Wins Jeopardy!

2011 – World IPv6 Day

2011 – Social Media Enables the Arab Spring

2012 – DNA Data Storage

2013 – Algorithm Influences Prison Sentence

2013 – Subscription Software “Popularized”

2014 – Data Breaches

2014 – Over-the-Air Vehicle Software Updates

2015 – Google Releases TensorFlow

2016 – Augmented Reality Goes Mainstream

2016 – Computer Beats Master at Game of Go

~2050 -Hahahaha! – Artificial General Intelligence (AGI)

~9999 – The Limits of Computation?


Fair Use Sources:

History Software Engineering

Prolog Programming Language Invented by Alain Colmerauer – 1972 AD

Return to Timeline of the History of Computers

The Prolog programming language was developed by Alain Colmerauer and colleagues in 1972 at the University of Marseilles.

Fair Use Sources:


Baudot Code – 1874 A.D.

Return to Timeline of the History of Computers


Baudot Code

Jean-Maurice-Émile Baudot (1845–1903), Donald Murray (1865–1945)

“Early telegraph systems relied on human operators to encode and transmit the sender’s message, and then to perceive, decode, and transcribe the message on paper upon receipt. Relying on human operators limited the maximum speed at which a message could be sent and required operator skills that were not easily available.

Émile Baudot developed a better approach. A trained French telegraph operator, Baudot devised a system that used a special keyboard with five keys (two for the left hand and three for the right) to send each character. Thirty-one different combinations arise from pressing one or more of the five keys together; Baudot assigned each code to a different letter of the alphabet. To send a message, the operator would type the codes in sequence as the machine clicked, roughly four times a second. With each click, a rotating part that Baudot called the distributor would read the position of each key in order and, if the key was pressed, send a corresponding pulse down the telegraph wire. At the other end, a remote printer would translate the codes back into a printed character on a piece of paper tape.

Baudot was one of the first people to combine key inventions by others into one working system. He patented his invention in 1874, started selling devices to the French Telegraph Administration in 1875, and was awarded the gold medal at the Paris Exposition Universelle in 1878. Baudot’s code was adopted as the International Telegraph Alphabet No. 1 (ITA1), one of the original international telecommunications standards. In recognition of his contribution, the baud, a unit of data transmission speed equal to the number of signal changes per second, is named after him.

In 1897, the Baudot system expanded to incorporate punched paper tape. The keyboard was disconnected from the telegraph line and connected to a new device that could punch holes across a strip of paper tape, with one hole corresponding to each key. Once punched, the tape could be loaded into a reader and the message sent down the telegraph wire faster than a human could type. In 1901, the inventor Donald Murray developed an easier-to-use punch that was based on a typewriter keyboard. Murray also made changes to Baudot’s code; the resulting code was known as the Baudot-Murray code (ITA2) and remained in use for more than 50 years.”

SEE ALSO ASCII (1963), Unicode (1992)

“Paper tape punched with the five-level Baudot code. The large holes correspond to the 5 bits of the code, while a rotating toothed tractor wheel fit into the small holes and used them to pull the tape through the machine.”

Fair Use Source: B07C2NQSPV

History Software Engineering

The Jacquard Loom – 1801 AD

Return to Timeline of the History of Computers


The Jacquard Loom

Joseph-Marie Jacquard (1752–1834)

“In 1801, French weaver Joseph-Marie Jacquard invented a way to accelerate and simplify the time-consuming, complex task of weaving fabric. His technique was the conceptual precursor to binary logic and programming that exists today.

While looms of the 18th century could create complex patterns, doing so was an entirely manual affair, requiring an extraordinary amount of time, constant vigilance to avoid mistakes, and skilled hands—especially with intricate fabric patterns such as damask and brocade. Jacquard realized that despite the complexity of a pattern, the act of weaving was a repetitive process that could be carried out mechanically. His invention used a series of cards laced together in a continuous chain, with a row on each card where holes could be punched, corresponding with one row of the fabric pattern. Some cards had holes in the specified position, while others did not. Essentially, the punched cards were a control mechanism that contained data—like binary 0s and 1s—that directed a sequence of actions, in this case how a loom could be mechanized to weave a repeating pattern. A hole would cause a corresponding thread to be raised, while no hole would cause the thread to be lowered. The actual mechanism involved a rod that would either travel through the hole or be stopped by the card; each rod was linked to a hook, and together they formed the harness that controlled the position of the threads. After the threads were raised or lowered, the shuttle holding another roll of thread would zip from one side of the loom to the other, completing the weave. Then the rods in the holes would retract, the card would advance, and the process would start over again.

Jacquard’s invention evolved from earlier ideas by Jacques de Vaucanson (1709–1782), Jean-Baptiste Falcon, and Basile Bouchon, the last of whom invented a way to control a loom using perforated tape in 1725. Later inventors would take that concept and use punched cards to represent numerical data and other types of information.”

SEE ALSO: Tabulating the US Census (1890)

A jacquard loom in the National Museum of Scotland, Edinburgh. Pins either are stopped by the card or poke through the holes, determining the pattern woven by the loom.”

Fair Use Source: B07C2NQSPV


Human Computers Predict Halley’s Comet – 1758 A.D.

Return to Timeline of the History of Computers


Human Computers Predict Halley’s Comet

Edmond Halley (1656–1742), Alexis-Claude Clairaut (1713–1765), Joseph Jérôme Lalande (1732–1807), Nicole-Reine Lepaute (1723–1788)

“The discovery of Kepler’s laws of planetary motion and Isaac Newton’s more general laws of motion and gravity encouraged scientists to seek elegant mathematical models to describe the world around them. Edmond Halley, the editor of Newton’s Principia (1687), used Newton’s calculus and laws to show that a comet seen in the night sky in 1531 and 1682 must be the same object. Halley’s work depended on the fact that the comet’s orbit was influenced not just by the sun, but also by the other planets in the solar system—especially Jupiter and Saturn. But Halley could not come up with an exact set of equations to describe the comet’s trajectory.

Alexis-Claude Clairaut was a French mathematician who devised a clever solution to the problem. But it wasn’t mathematically elegant: instead of solving the problem symbolically, his method solved the problem numerically—that is, with a series of arithmetic calculations. He worked with two friends, Joseph Jérôme Lalande and Nicole-Reine Lepaute, during the summer of 1758, and the three systematically plotted the course of the comet, calculating the wanderer’s return to within 31 days.

This approach of using numerical calculations to solve hard science problems quickly caught on. In 1759, Lalande and Lepaute were hired by the French Académie des Sciences to contribute computations to the Connaissance des Temps, the official French almanac; five years later, the English government hired six human computers to create its own almanac. These printed tables charted the anticipated positions of the stars and planets and were the basis of celestial navigation, allowing the European powers to build out their colonies.

In 1791, Gaspard Clair François Marie Riche de Prony (1755–1839) embarked on the largest human computation project to that date: to create a 19-volume set of trigonometric and logarithmic tables for the French government. The project took six years and required 96 human computers.”

SEE ALSO First Recorded Use of the Word Computer (1613)

The course of Halley’s Comet across the night sky from April through May of 1910.

Fair Use Source: B07C2NQSPV