Categories
History

Electrical Engineering – Early 1900s

Return to Timeline of the History of Computers

Electrical Engineering

“The railway brought people to the Bay Area, and created the first fortunes. But then, the Bay Area needed electricity. California had plenty of water, coming down from its mighty Sierra Nevada mountain range. Entrepreneurs understood that dams (hydroelectric plants) could provide the electrical power needed by the coastal cities, and engineers were working on solving the problem of how to distribute that power. The East Coast had not faced the problem of carrying high-tension voltage over long-distances, but that was precisely the problem to be solved on the West Coast. Stanford professors and students, under the leadership of the new head of the Electrical Engineering Department, Harris Ryan, another Cornell alumnus who had arrived in 1905, helped solve the problem. They inaugurated a cooperative model between university and industry. The Bay Area’s electrical power companies used the Stanford High Voltage Laboratory (as well as the one at UC Berkeley) for the development of long-distance electric power transmission. That cooperation, in addition, raised a generation of electrical engineers that could match the know-how of the East Coast.”

SEE ALSO: Radio Engineering – 1890s to 1930s AD

Fair Use Sources:

B07XVF5RSP

Categories
History

Santa Clara Valley

Return to Timeline of the History of Computers

Santa Clara Valley

“The Santa Clara Valley (the valley between Palo Alto and San Jose) was known as the “Valley of Heart’s Delight” because it was an endless expanse of orchards. Its agriculture was growing rapidly and, thanks to the invention of the refrigerated railroad car, it soon became the largest fruit production and packing region in the world. At one point there were 39 canneries in the valley, notably the San Jose Fruit Packing Company. At the peak, Chinese workers represented 48% of agricultural labor in the Santa Clara Valley. In 1863 the second railroad of California (after the pioneering Sacramento-Folsom of 1855) connected San Francisco to Mayfield (now Churhill Avenue in Palo Alto), a rough town popular with loggers (and later with students), and then to San Jose (in 1864) with a daily ride that took three and a half hours. The Menlo Park depot (built in 1867) was the major station on that route until Palo Alto began to grow.”

“The first transcontinental railroad was finally completed in 1869, linking the East Coast with Oakland (and then by ferry to San Francisco).”

“Perhaps the first “high tech” of the Bay Area came in the form of the aerial tramway invented in 1867 by the British-born Andrew Hallidie, a former gold miner and a bridge builder. Installed on high towers that frequently overlooked incredibly steep slopes, it was used across the Sierra Nevada to transport ore, supplies and miners. In 1873 Hallidie, using a similar design with help from German-born engineer William Ep, inaugurated the Clay Street Hill Railroad in San Francisco, the world’s first cable-car system.”

“At the time the Bay Area also had its flirt with oil, in fact predating the celebrated Edward Doheny well of 1892 that started the oil rush in Los Angeles. In 1879 a San Francisco banker and politician, Charles Felton, founded the Pacific Coast Oil Company (PCO). Within a few months the new company discovered large oil deposits on Moody Gulch, a few kilometers west of San Jose in the south bay. In 1880 PCO opened a refinery in the island Alameda, located near Oakland by the bay, i.e. with good access to the railroad terminal and the port. In 1902 Rockefeller’s Standard Oil, that two years earlier had acquired PCO, built a new refinery further north, in what is now Richmond, one of the largest and most advanced refineries in the world. In 1907 this refinery invented Zerolene, one of the most successful Standard Oil products.”

“The agricultural boom increased the demand for firewood and lumber, which made the fortune of the Santa Clara Valley Mill & Lumber Company of Felton. (But mostly the boom made the fortune of the “railroad barons”, who provided the main form of transportation for goods and people. In fact, Santa Clara county confronted the arrogant railroad empires in a case that became famous in and had consequences for the whole nation: in 1886 the Supreme Court of the USA decreed that corporations should have the same rights as persons, and therefore the Southern Pacific Railroad Company was entitled to deduct mortgage from its taxable income just like any household). And, of course, ports dotted the bay, notably Redwood City’s port that shipped lumber to San Francisco. Redwood City was located in the “Peninsula,” i.e. the stretch of land between San Francisco and Palo Alto.”

“Most of the Peninsula belonged to San Mateo County and was underpopulated. The county road from San Francisco to Belmont (north of Redwood City) served the wealthy San Franciscan who had bought a mansion in the countryside, typically for the summer, when San Francisco was blanketed by its famous fog. These mansions usually controlled a large tract of land and constituted self-sufficient agricultural units. The First World War (1917) helped populate one town, Menlo Park, just north of Palo Alto, where the Army established Camp Fremont to train tens of thousands of soldiers.”

“The Bay Area became one in the early years of the 20th century. In the 1880s Frank Smith, who had made his fortune with his borax mines in Nevada and Death Valley, settled in Oakland and began to create a network of railways that eventually (1903) would become the Key System, connecting San Francisco, Oakland and San Jose.”

“Not much else was going on in the sleepy bay accidentally discovered in 1769 by Spanish explorer Gaspar de Portola.”

“A lot was going in the rest of the US. The nation was booming with innovative ideas revolutionizing agriculture, industry, mining and transportation. Since there were more and more numbers to crunch, it is not surprising that in those years inventors devised several computing machines. The most influential were William Burroughs’ adding machine of 1885 and Herman Hollerith’s tabulator of 1890 (chosen for the national census). However, the new sensation at the turn of the century was electricity, which was enabling a whole new spectrum of appliances, from the light bulb to the phonograph.”

Fair Use Sources:

B07XVF5RSP

Categories
History

Strowger Step-by-Step Switch – 1891 A.D.

Return to Timeline of the History of Computers

1891

Strowger Step-by-Step Switch

Almon Brown Strowger (1839–1902)

“The Bell Telephone Company was incorporated in July 1877, and by the 1880s it was quickly expanding. The switchboards that connected phones together and completed calls were manually run by operators.

The early phone system didn’t have dials or buttons. Instead, there was a crank, connected to a tiny electrical generator. Users would pick up the phone and turn the crank, and electricity would travel down the phone line to signal the operator.

Almon Strowger was an undertaker in Kansas City, Missouri. He noticed that his business had declined as the telephone became more popular. Strowger learned that one of the telephone operators was married to his competitor, and whenever a phone call came in for the undertaker, she would direct the call to her husband. Motivated, Strowger invented the step-by-step switch, an electromechanical device that would complete a circuit between one phone and a bank of others depending on a sequence of electric pulses sent down the phone line. Instead of relying on an operator to connect, Strowger envisioned that people would tap out a code using a pair of push buttons.

Working with his nephew, Strowger built a working model and got a patent. Although other inventors had experimented with operator-free dialing systems—thousands of patents were filed—this system “worked with reasonable accuracy,” according to a 1953 article in the Bell Laboratories Record.

Strowger, family members, and investors then created the Strowger Automatic Telephone Exchange Company in 1891. They went to La Porte, Indiana, which had recently lost its telephone system because of a patent dispute between the local independent operator and the Bell Telephone System, and set up the world’s first automated telephone exchange with direct dialing—at least for local calls—in 1892.

The switch was called “step-by-step” because of the way that a telephone call was completed, one dialed digit at a time. Step-by-step exchanges remained in service throughout the United States until 1999, when the last was removed from service, replaced by the #5ESS computerized local exchange.”

SEE ALSO Digital Long Distance (1962)

“The friction drive of the Western Electric 7A Rotary, No. 7001 Line Finder. The bevel gear on the right has a steady rotary motion and does not use an electromagnet for stepping.”

Fair Use Source: B07C2NQSPV

Categories
History

Semiconductor Diode – 1874 A.D.

Return to Timeline of the History of Computers

1874

Semiconductor Diode

Michael Faraday (1791–1867), Karl Ferdinand Braun (1850–1918)

“Semiconductors are curious devices: not quite conductors like copper, gold, or silver, not quite insulators like plastic or rubber. In 1833, Michael Faraday discovered that the chemical silver sulfide became a better conductor when heated, unlike metals that lose their conductivity under the same conditions. Separately, in 1874, Karl Ferdinand Braun, a 24-year-old German physicist, discovered that a metal sulfide crystal touched with a metal probe would conduct electricity in only one direction. This “one direction” characteristic is what defines diodes or rectifiers, the simplest electronic components.”

“In 1904 the British chemist John-Ambrose Fleming had invented the two-element amplifier, or ‘diode’, and a few months before DeForest the Austrian physicist Robert von Lieben had already built a three-element amplifier, or triode.” (Fair Use: B07XVF5RSP)

“Braun’s discovery was a curiosity until the invention of radio. The diode proved critical in allowing radio to make the transition from wireless telegraphy to the transmission and reception of the human voice. The diode of choice for these early radio sets was frequently called a cat’s whisker diode, because it consisted of a crystal of galena, a form of lead sulfide, in contact with a spring of metal (the “whisker”). By carefully manipulating the pressure and orientation of the metal against the crystal, an operator could adjust the electrical properties of the semiconductor until they were optimal for radio reception. Powered only by the radio waves themselves, a crystal set was only strong enough to faintly produce sounds in an earphone.”

“Crystal radio receivers were used onboard ships and then in homes until they were replaced by new receivers based on vacuum tubes, which could amplify the faint radio waves so that they were strong enough to power a speaker and fill a room with speech or music. But tubes didn’t mark the end of the crystal radio: the devices remained popular for people who couldn’t get tubes—such as on the front lines in World War II — as well as among children learning about electronics. In the 1940s, scientists at Bell Labs turned their attention to semiconductor radios once again in an effort to perfect microwave communications. In the process, they discovered the transistor.”

“Braun went on to make other fundamental contributions to physics and electronics. In 1897, he invented the cathode-ray tube (CRT), which would become the basis of television. He shared the 1909 Nobel Prize with Guglielmo Marconi (1874–1937) “in recognition of their contributions to the development of wireless telegraphy.””

SEE ALSO: Silicon Transistor (1947)

Crystal Detector, made by the Philmore Manufacturing Company. To use this device, the operator would connect a wire to each of the two flanges and press the metal “whisker” into the semiconductor crystal.”

Fair Use Sources:

Main: B07C2NQSPV

Secondary: B07XVF5RSP