Categories
AWS Bibliography Cloud DevOps Software Engineering

Learn Amazon Web Services in a Month of Lunches – ISBN-13: 978-1617294440

See: Learn Amazon Web Services in a Month of Lunches, Publisher ‏ : ‎ Manning Publications; 1st edition (September 3, 2017)

Fair Use Source:

Summary

Learn Amazon Web Services in a Month of Lunches guides you through the process of building a robust and secure web application using the core AWS services you really need to know. You’ll be amazed by how much you can accomplish with AWS!

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the Technology

Cloud computing has transformed the way we build and deliver software. With the Amazon Web Services cloud platform, you can trade expensive glass room hardware and custom infrastructure for virtual servers and easy-to-configure storage, security, and networking services. Better, because you don’t own the hardware, you only pay for the computing power you need! Just learn a few key ideas and techniques and you can have applications up and running in AWS in minutes.

About the Book

Learn Amazon Web Services in a Month of Lunches gets you started with AWS fast. In just 21 bite-size lessons, you’ll learn the concepts and practical techniques you need to deploy and manage applications. You’ll learn by doing real-world labs that guide you from the core AWS tool set through setting up security and storage and planning for growth. You’ll even deploy a public-facing application that’s highly available, scalable, and load balanced.

What’s Inside

  • First steps with AWS – no experience required
  • Deploy web apps using EC2, RDS, S3, and Route 53
  • Cheap and fast system backups
  • Setting up cloud automation

About the Reader

If you know your way around Windows or Linux and have a basic idea of how web applications work, you’re ready to start using AWS.

About the Author

David Clinton is a system administrator, teacher, and writer. He has administered, written about, and created training materials for many important technology subjects including Linux systems, cloud computing (AWS in particular), and container technologies like Docker. Many of his video training courses can be found on Pluralsight.com, and links to his other books (on Linux administration and server virtualization) can be found at https://bootstrap-it.com.

Table of Contents

  1. Before you begin
  2. The 10-minute EC2 web server
  3. Provisioning a more robust EC2 website
  4. Databases on AWS
  5. DNS: what’s in a name?
  6. S3: cheap, fast file storage
  7. S3: cheap, fast system backups
  8. AWS security: working with IAM users, groups, and roles
  9. Managing growth
  10. Pushing back against the chaos: using resource tags
  11. CloudWatch: monitoring AWS resources for fun and profit
  12. Another way to play: the command-line interface
  13. Keeping ahead of user demand
  14. High availability: working with AWS networking tools
  15. High availability: load balancing
  16. High availability: auto scaling
  17. High availability: content-delivery networks
  18. Building hybrid infrastructure
  19. Cloud automation: working with Elastic Beanstalk, Docker, and Lambda
  20. Everything else (nearly)
  21. Never the end

Categories
AWS Bibliography Cloud Software Engineering

AWS Lambda in Action – ISBN-13: 978-1617293719

See: AWS Lambda in Action: Event-driven serverless applications, 1st Edition, Publisher ‏ : ‎ Manning Publications; 1st edition (December 5, 2016)

Fair Use Source:

Summary

AWS Lambda in Action is an example-driven tutorial that teaches you how to build applications that use an event-driven approach on the back end.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the Technology

With AWS Lambda, you write your code and upload it to the AWS cloud. AWS Lambda responds to the events triggered by your application or your users, and automatically manages the underlying computer resources for you. Back-end tasks like analyzing a new document or processing requests from a mobile app are easy to implement. Your application is divided into small functions, leading naturally to a reactive architecture and the adoption of microservices.

About the Book

AWS Lambda in Action is an example-driven tutorial that teaches you how to build applications that use an event-driven approach on the back-end. Starting with an overview of AWS Lambda, the book moves on to show you common examples and patterns that you can use to call Lambda functions from a web page or a mobile app. The second part of the book puts these smaller examples together to build larger applications. By the end, you’ll be ready to create applications that take advantage of the high availability, security, performance, and scalability of AWS.

What’s Inside

  • Create a simple API
  • Create an event-driven media-sharing application
  • Secure access to your application in the cloud
  • Use functions from different clients like web pages or mobile apps
  • Connect your application with external services

About the Reader

Requires basic knowledge of JavaScript. Some examples are also provided in Python. No AWS experience is assumed.

About the Author

Danilo Poccia is a technical evangelist at Amazon Web Services and a frequent speaker at public events and workshops.

Table of Contents

PART 1 – FIRST STEPS

  1. Running functions in the cloud
  2. Your first Lambda function
  3. Your function as a web API

PART 2 – BUILDING EVENT-DRIVEN APPLICATIONS

  1. Managing security
  2. Using standalone functions
  3. Managing identities
  4. Calling functions from a client
  5. Designing an authentication service
  6. Implementing an authentication service
  7. Adding more features to the authentication service
  8. Building a media-sharing application
  9. Why event-driven?

PART 3 – FROM DEVELOPMENT TO PRODUCTION

  1. Improving development and testing
  2. Automating deployment
  3. Automating infrastructure management

PART 4 – USING EXTERNAL SERVICES

  1. Calling external services
  2. Receiving events from other services

Categories
AWS Bibliography JavaScript React Software Engineering

B08CXNRPZC ISBN-13: 978-1492059899

See: Full Stack Serverless: Modern Application Development with React, AWS, and GraphQL 1st Edition

Fair Use Source:

Categories
Artificial Intelligence AWS Bibliography Data Science - Big Data

B0921MXC9S

See: Data Science on AWS: Implementing End-to-End, Continuous AI and Machine Learning Pipelines 1st Edition

Fair Use Source:

Categories
AWS Azure Cloud DevOps GCP Linux Operating Systems Software Engineering

List of Linux containers

Linux containers are implementations of operating system-level virtualization for the Linux operating system. Several implementations exist, all based on the virtualization, isolation, and resource management mechanisms provided by the Linux kernel, notably Linux namespaces and cgroups.[1] These include:” (WP)

See also

References

  1. ^ Rami, Rosen. “Namespaces and Cgroups, the basis of Linux Containers” (PDF). Retrieved 18 August 2016.
  2. ^ “LXC – Linux Containers”linuxcontainers.org. Retrieved 2014-11-10.
  3. ^ “LXD”linuxcontainers.org. Retrieved 2021-02-11.
  4. ^ “Rkt container engine”.
  5. ^ “CNCF Archives RKT”. CNCF. Retrieved 19 Aug 2019.
  6. ^ “Red Hat to Acquire CoreOS”. Red Hat inc. Retrieved 30 Jan 2018.
  7. ^ Poettering, Lennart. “systemd For Administrators, Part XXI”. Retrieved 2 July 2016.
  8. ^ Rootless containers with Podman and fuse-overlayfs, CERN Workshop, 2019-06-04
  9. ^ https://hpc.github.io/charliecloud/. Retrieved 4 October 2020. Missing or empty |title= (help)
  10. ^ “Bottlerocket is a Linux-based operating system purpose-built to run containers”.
This Linux-related article is a stub. You can help Wikipedia by expanding it.

Categories

” (WP)

Sources:

Fair Use Sources:

Categories
Cloud DevOps DevSecOps-Security-Privacy Linux Software Engineering

DevOps toolchain

See also: CloudOps, toolchain

“A DevOps toolchain is a set or combination of tools that aid in the delivery, development, and management of software applications throughout the systems development life cycle, as coordinated by an organization that uses DevOps practices.

Generally, DevOps tools fit into one or more activities, which supports specific DevOps initiatives: Plan, Create, Verify, Package, Release, Configure, Monitor, and Version Control.[1][2]” (WP)

Toolchains

“In software, a toolchain is the set of programming tools that is used to perform a complex software development task or to create a software product, which is typically another computer program or a set of related programs. In general, the tools forming a toolchain are executed consecutively so the output or resulting environment state of each tool becomes the input or starting environment for the next one, but the term is also used when referring to a set of related tools that are not necessarily executed consecutively.[3][4][5]

As DevOps is a set of practices that emphasizes the collaboration and communication of both software developers and other information technology (IT) professionals, while automating the process of software delivery and infrastructure changes, its implementation can include the definition of the series of tools used at various stages of the lifecycle; because DevOps is a cultural shift and collaboration between development and operations, there is no one product that can be considered a single DevOps tool. Instead a collection of tools, potentially from a variety of vendors, are used in one or more stages of the lifecycle.[6][7]” (WP)

Stages of DevOps

Further information: DevOps

Plan

Plan is composed of two things: “define” and “plan”.[8] This activity refers to the business value and application requirements. Specifically “Plan” activities include:

  • Production metrics, objects and feedback
  • Requirements
  • Business metrics
  • Update release metrics
  • Release plan, timing and business case
  • Security policy and requirement

A combination of the IT personnel will be involved in these activities: business application owners, software developmentsoftware architects, continual release management, security officers and the organization responsible for managing the production of IT infrastructure.

Create

Create is composed of the building (see also build automation), coding, and configuring of the software development process.[8] The specific activities are:

Tools and vendors in this category often overlap with other categories. Because DevOps is about breaking down silos, this is reflective in the activities and product solutions.[clarification needed]

Verify

Verify is directly associated with ensuring the quality of the software release; activities designed to ensure code quality is maintained and the highest quality is deployed to production.[8] The main activities in this are:

Solutions for verify related activities generally fall under four main categories: Test automation , Static analysis , Test Lab, and Security.

Packaging

Packaging refers to the activities involved once the release is ready for deployment, often also referred to as staging or Preproduction / “preprod”.[8] This often includes tasks and activities such as:

  • Approval/preapprovals
  • Package configuration
  • Triggered releases
  • Release staging and holding

Release

Release related activities include schedule, orchestration, provisioning and deploying software into production and targeted environment.[9] The specific Release activities include:

  • Release coordination
  • Deploying and promoting applications
  • Fallbacks and recovery
  • Scheduled/timed releases

Solutions that cover this aspect of the toolchain include application release automation, deployment automation and release management.

Configure

Configure activities fall under the operation side of DevOps. Once software is deployed, there may be additional IT infrastructure provisioning and configuration activities required.[8] Specific activities including:

  • Infrastructure storage, database and network provisioning and configuring
  • Application provision and configuration.

The main types of solutions that facilitate these activities are continuous configuration automationconfiguration management, and infrastructure as code tools.[10]

Monitor

Monitoring is an important link in a DevOps toolchain. It allows IT organization to identify specific issues of specific releases and to understand the impact on end-users.[8] A summary of Monitor related activities are:

  • Performance of IT infrastructure
  • End-user response and experience
  • Production metrics and statistics

Information from monitoring activities often impacts Plan activities required for changes and for new release cycles.

Version Control

Version Control is an important link in a DevOps toolchain and a component of software configuration management. Version Control is the management of changes to documents, computer programs, large web sites, and other collections of information.[8] A summary of Version Control related activities are:

  • Non-linear development
  • Distributed development
  • Compatibility with existent systems and protocols
  • Toolkit-based design

Information from Version Control often supports Release activities required for changes and for new release cycles.

See also

References

  1. ^ Edwards, Damon. “Integrating DevOps tools into a Service Delivery Platform”dev2ops.org.
  2. ^ Seroter, Richard. “Exploring the ENTIRE DevOps Toolchain for (Cloud) Teams”infoq.com.
  3. ^ “Toolchain Overview”nongnu.org. 2012-01-03. Retrieved 2013-10-21.
  4. ^ “Toolchains”elinux.org. 2013-09-08. Retrieved 2013-10-21.
  5. ^ Imran, Saed; Buchheit, Martin; Hollunder, Bernhard; Schreier, Ulf (2015-10-29). Tool Chains in Agile ALM Environments: A Short IntroductionLecture Notes in Computer Science9416. pp. 371–380. doi:10.1007/978-3-319-26138-6_40ISBN 978-3-319-26137-9.
  6. ^ Loukides, Mike (2012-06-07). “What is DevOps?”.
  7. ^ Garner Market Trends: DevOps – Not a Market, but Tool-Centric Philosophy That supports a Continuous Delivery Value Chain (Report). Gartner. 18 February 2015.
  8. a b c d e f g Avoid Failure by Developing a Toolchain that Enables DevOps (Report). Gartner. 16 March 2016.
  9. ^ Best Practices in Change, Configuration and Release Management (Report). Gartner. 14 July 2010.
  10. ^ Roger S. Pressman (2009). Software Engineering: A Practitioner’s Approach (7th International ed.). New York: McGraw-Hill.

Categories

Sources:

Fair Use Sources:

Categories
Artificial Intelligence AWS Azure Cloud Data Science - Big Data DevOps DevSecOps-Security-Privacy GCP Hardware and Electronics Kubernetes Linux Networking Operating Systems PowerShell Python Software Engineering Windows Server

IaC Infrastructure as Code

Return to Timeline of the History of Computers, Networking

Infrastructure as code (IaC) is the process of managing and provisioning computer data centers through machine-readable definition files, rather than physical hardware configuration or interactive configuration tools.[1] The IT infrastructure managed by this process comprises both physical equipment, such as bare-metal servers, as well as virtual machines, and associated configuration resources. The definitions may be in a version control system. It can use either scripts or declarative definitions, rather than manual processes, but the term is more often used to promote declarative approaches.

Overview

IaC grew as a response to the difficulty posed by utility computing and second-generation web frameworks. In 2006, the launch of Amazon Web Services’ Elastic Compute Cloud and the 1.0 version of Ruby on Rails just months before[2] created widespread scaling problems in the enterprise that were previously experienced only at large, multi-national companies.[3] With new tools emerging to handle this ever growing field, the idea of IaC was born. The thought of modelling infrastructure with code, and then having the ability to design, implement, and deploy applications infrastructure with known software best practices appealed to both software developers and IT infrastructure administrators. The ability to treat infrastructure like code and use the same tools as any other software project would allow developers to rapidly deploy applications.[4]

Added value and advantages

The value of IaC can be broken down into three measurable categories: cost, speed, and risk.[citation needed] Cost reduction aims at helping not only the enterprise financially, but also in terms of people and effort, meaning that by removing the manual component, people are able to refocus their efforts towards other enterprise tasks.[citation needed] Infrastructure automation enables speed through faster execution when configuring your infrastructure and aims at providing visibility to help other teams across the enterprise work quickly and more efficiently. Automation removes the risk associated with human error, like manual misconfiguration; removing this can decrease downtime and increase reliability. These outcomes and attributes help the enterprise move towards implementing a culture of DevOps, the combined working of development and operations.[5]

Types of approaches

There are generally two approaches to IaC: declarative (functional) vs. imperative (procedural). The difference between the declarative and the imperative approach is essentially ‘what’ versus ‘how’ . The declarative approach focuses on what the eventual target configuration should be; the imperative focuses on how the infrastructure is to be changed to meet this.[6] The declarative approach defines the desired state and the system executes what needs to happen to achieve that desired state. Imperative defines specific commands that need to be executed in the appropriate order to end with the desired conclusion. [7]

Methods

There are two methods of IaC: push‘ and pull‘ . The main difference is the manner in which the servers are told how to be configured. In the pull method the server to be configured will pull its configuration from the controlling server. In the push method the controlling server pushes the configuration to the destination system.[8]

Tools

There are many tools that fulfill infrastructure automation capabilities and use IaC. Broadly speaking, any framework or tool that performs changes or configures infrastructure declaratively or imperatively based on a programmatic approach can be considered IaC.[9] Traditionally, server (lifecycle) automation and configuration management tools were used to accomplish IaC. Now enterprises are also using continuous configuration automation tools or stand-alone IaC frameworks, such as Microsoft’s PowerShell DSC[10] or AWS CloudFormation.[11]

Continuous configuration automation

All continuous configuration automation (CCA) tools can be thought of as an extension of traditional IaC frameworks. They leverage IaC to change, configure, and automate infrastructure, and they also provide visibility, efficiency and flexibility in how infrastructure is managed.[3] These additional attributes provide enterprise-level security and compliance.

Community content

See also: List of systems management systems and Comparison of open-source configuration management software

An important aspect when considering CCA tools, if they are open source, is the community content. As Gartner states, the value of CCA tools is “as dependent on user-community-contributed content and support as it is on the commercial maturity and performance of the automation tooling.”[3] Vendors like Puppet and Chef, those that have been around a significant amount of time, have created their own communities. Chef has Chef Community Repository and Puppet has PuppetForge.[12] Other vendors rely on adjacent communities and leverage other IaC frameworks such as PowerShell DSC.[10] New vendors are emerging that are not content driven, but model driven with the intelligence in the product to deliver content. These visual, object-oriented systems work well for developers, but they are especially useful to production oriented DevOps and operations constituents that value models versus scripting for content. As the field continues to develop and change, the community based content will become ever important to how IaC tools are used, unless they are model driven and object oriented.

Notable CCA tools include:

ToolReleased byMethodApproachWritten inComments
ChefChef (2009)PullDeclarative and imperativeRuby
OtterInedoPushDeclarative and imperativeWindows oriented
PuppetPuppet (2005)PullDeclarative and imperativeC++ & Clojure since 4.0, Ruby
SaltStackSaltStackPush and PullDeclarative and imperativePython
CFEngineNorthern.techPullDeclarativeC
TerraformHashiCorp (2014)PushDeclarativeGo
Ansible / Ansible TowerRed Hat (2012)PushDeclarative and imperativePython

Other tools include AWS CloudFormationcdistStackStormJuju, and Pulumi.

Relationship to DevOps

IaC can be a key attribute of enabling best practices in DevOps – Developers become more involved in defining configuration and Ops teams get involved earlier in the development process.[13] Tools that utilize IaC bring visibility to the state and configuration of servers and ultimately provide the visibility to users within the enterprise, aiming to bring teams together to maximize their efforts.[14] Automation in general aims to take the confusion and error-prone aspect of manual processes and make it more efficient, and productive. Allowing for better software and applications to be created with flexibility, less downtime, and an overall cost effective way for the company. IaC is intended to reduce the complexity that kills efficiency out of manual configuration. Automation and collaboration are considered central points in DevOps; Infrastructure automation tools are often included as components of a DevOps toolchain.[15]

Relationship to security

The 2020 Cloud Threat Report released by Unit 42 (the threat intelligence unit of cybersecurity provider Palo Alto Networks) identified around 200,000 potential vulnerabilities in infrastructure as code templates.[16]

See also

References

  1. ^ Wittig, Andreas; Wittig, Michael (2016). Amazon Web Services in Action. Manning Press. p. 93. ISBN 978-1-61729-288-0.
  2. ^ Bower, Joseph L.; Christensen, Clayton M. “Disruptive Technologies: Catching the Wave”. Harvard Business Review.
  3. a b c Fletcher, Colin; Cosgrove, Terrence (26 August 2015). Innovation Insight for Continuous Configuration Automation ToolsGartner (Report).
  4. ^ Riley, Chris (12 November 2015). “Version Your Infrastructure”DevOps.com.
  5. ^ Phillips, Andrew (14 May 2015). “Moving from Infrastructure Automation to True DevOps”DevOps.com.
  6. ^ “Declarative v. Imperative Models for Configuration Management: Which Is Really Better?”Scriptrock.com. Retrieved 14 December 2015.
  7. ^ Loschwitz, Martin (14 November 2014). “Choosing between the leading open source configuration managers”Admin Network & Security. Lawrence, KS USA: Linux New Media USA LLC.
  8. ^ Venezia, Paul (21 November 2013). “Puppet vs. Chef vs. Ansible vs. Salt”networkworld.com. Network World. Retrieved 14 December 2015.
  9. ^ Garner Market Trends: DevOps – Not a Market, but Tool-Centric Philosophy That supports a Continuous Delivery Value Chain (Report). Gartner. 18 February 2015.
  10. a b Chaganti, Ravikanth (5 January 2016). “DevOps, Infrastructure as Code, and PowerShell DSC: The Introduction”PowerShell Magazine. PowerShell Magazine. Retrieved 11 January 2016.
  11. ^ https://aws.amazon.com/about-aws/whats-new/2011/02/25/introducing-aws-cloudformation/
  12. ^ Sturgeon, Phil (28 October 2012). “Puppet or Chef?”.
  13. ^ Ramos, Martin (4 November 2015). “Continuous Integration: Infrastructure as Code in DevOps”easydynamics.com. Archived from the original on 6 February 2016. Retrieved 29 January 2016.
  14. ^ Infrastructure As Code: Fueling the Fire for Faster Application Delivery (Report). Forrester. March 2015.
  15. ^ Wurster, Laurie F.; Colville, Ronni J.; Height, Cameron; Tripathi, Somendra; Rastogi, Aditi. Emerging Technology Analysis: DevOps a Culture Shift, Not a Technology (Report). Gartner.
  16. ^ “Cloud Threat Report Shows Need for Consistent DevSecOps”InformationWeek. Retrieved 24 February 2020.

Categories

Fair Use Sources:

Categories
AWS Azure Cloud DevOps DevSecOps-Security-Privacy GCP History Kubernetes Linux Networking Operating Systems PowerShell Python Software Engineering Windows Server

SCM Software Configuration Management – S/W CM

See also: Configuration management (CM)

Not to be confused with Version Control System.

In software engineeringsoftware configuration management (SCM or S/W CM) is the task of tracking and controlling changes in the software, part of the larger cross-disciplinary field of configuration management.[1] SCM practices include revision control and the establishment of baselines. If something goes wrong, SCM can determine what was changed and who changed it. If a configuration is working well, SCM can determine how to replicate it across many hosts.

The acronym “SCM” is also expanded as source configuration management process and software change and configuration management.[2] However, “configuration” is generally understood to cover changes typically made by a system administrator.

Purposes

The goals of SCM are generally:[citation needed]

  • Configuration identification – Identifying configurations, configuration items and baselines.
  • Configuration control – Implementing a controlled change process. This is usually achieved by setting up a change control board whose primary function is to approve or reject all change requests that are sent against any baseline.
  • Configuration status accounting – Recording and reporting all the necessary information on the status of the development process.
  • Configuration auditing – Ensuring that configurations contain all their intended parts and are sound with respect to their specifying documents, including requirements, architectural specifications and user manuals.
  • Build management – Managing the process and tools used for builds.
  • Process management – Ensuring adherence to the organization’s development process.
  • Environment management – Managing the software and hardware that host the system.
  • Teamwork – Facilitate team interactions related to the process.
  • Defect tracking – Making sure every defect has traceability back to the source.

With the introduction of cloud computing the purposes of SCM tools have become merged in some cases. The SCM tools themselves have become virtual appliances that can be instantiated as virtual machines and saved with state and version. The tools can model and manage cloud-based virtual resources, including virtual appliances, storage units, and software bundles. The roles and responsibilities of the actors have become merged as well with developers now being able to dynamically instantiate virtual servers and related resources.[3]

History

The history of software configuration management (SCM) in computing can be traced back as early as the 1950s, when CM (for Configuration Management), originally for hardware development and production control, was being applied to software development. Early software had a physical footprint, such as cardstapes, and other media. The first software configuration management was a manual operation. With the advances in language and complexity, software engineering, involving configuration management and other methods, became a major concern due to issues like schedule, budget, and quality. Practical lessons, over the years, had led to the definition, and establishment, of procedures and tools. Eventually, the tools became systems to manage software changes.[4] Industry-wide practices were offered as solutions, either in an open or proprietary manner (such as Revision Control System). With the growing use of computers, systems emerged that handled a broader scope, including requirements management, design alternatives, quality control, and more; later tools followed the guidelines of organizations, such as the Capability Maturity Model of the Software Engineering Institute.

See also

References

  1. ^ Roger S. Pressman (2009). Software Engineering: A Practitioner’s Approach (7th International ed.). New York: McGraw-Hill.
  2. ^ Gartner and Forrester Research
  3. ^ Amies, A; Peddle S; Pan T M; Zou P X (June 5, 2012). “Develop cloud applications with Rational tools”IBM DeveloperWorks. IBM.
  4. ^ “1988 “A Guide to Understanding Configuration Management in Trusted Systems” National Computer Security System (via Google)

Further reading

  • 828-2012 IEEE Standard for Configuration Management in Systems and Software Engineering. 2012. doi:10.1109/IEEESTD.2012.6170935ISBN 978-0-7381-7232-3.
  • Aiello, R. (2010). Configuration Management Best Practices: Practical Methods that Work in the Real World (1st ed.). Addison-Wesley. ISBN 0-321-68586-5.
  • Babich, W.A. (1986). Software Configuration Management, Coordination for Team Productivity. 1st edition. Boston: Addison-Wesley
  • Berczuk, Appleton; (2003). Software Configuration Management Patterns: Effective TeamWork, Practical Integration (1st ed.). Addison-Wesley. ISBN 0-201-74117-2.
  • Bersoff, E.H. (1997). Elements of Software Configuration Management. IEEE Computer Society Press, Los Alamitos, CA, 1-32
  • Dennis, A., Wixom, B.H. & Tegarden, D. (2002). System Analysis & Design: An Object-Oriented Approach with UML. Hoboken, New York: John Wiley & Sons, Inc.
  • Department of Defense, USA (2001). Military Handbook: Configuration management guidance (rev. A) (MIL-HDBK-61A). Retrieved January 5, 2010, from http://www.everyspec.com/MIL-HDBK/MIL-HDBK-0001-0099/MIL-HDBK-61_11531/
  • Futrell, R.T. et al. (2002). Quality Software Project Management. 1st edition. Prentice-Hall.
  • International Organization for Standardization (2003). ISO 10007: Quality management systems – Guidelines for configuration management.
  • Saeki M. (2003). Embedding Metrics into Information Systems Development Methods: An Application of Method Engineering Technique. CAiSE 2003, 374–389.
  • Scott, J.A. & Nisse, D. (2001). Software configuration management. In: Guide to Software Engineering Body of Knowledge. Retrieved January 5, 2010, from http://www.computer.org/portal/web/swebok/htmlformat
  • Paul M. Duvall, Steve Matyas, and Andrew Glover (2007). Continuous Integration: Improving Software Quality and Reducing Risk. (1st ed.). Addison-Wesley Professional. ISBN 0-321-33638-0.

External links

Fair Use Sources: