Categories
Android OS Apple iOS Apple macOS C Language C# .NET C++ Django Web Framework Flask Web Framework Go Programming Language Java JavaScript Kotlin Linux Operating Systems PowerShell Python Ruby Software Engineering Spring Framework Swift TypeScript Windows Desktop Windows Server

Operating systems (OS)

An operating system (OS) is system software that manages computer hardwaresoftware resources, and provides common services for computer programs.

Time-sharing operating systems schedule tasks for efficient use of the system and may also include accounting software for cost allocation of processor timemass storage, printing, and other resources.

For hardware functions such as input and output and memory allocation, the operating system acts as an intermediary between programs and the computer hardware,[1][2] although the application code is usually executed directly by the hardware and frequently makes system calls to an OS function or is interrupted by it. Operating systems are found on many devices that contain a computer – from cellular phones and video game consoles to web servers and supercomputers.

The dominant general-purpose[3] desktop operating system is Microsoft Windows with a market share of around 76.45%. macOS by Apple Inc. is in second place (17.72%), and the varieties of Linux are collectively in third place (1.73%).[4] In the mobile sector (including smartphones and tablets), Android’s share is up to 72% in the year 2020.[5] According to third quarter 2016 data, Android’s share on smartphones is dominant with 87.5 percent with also a growth rate of 10.3 percent per year, followed by Apple’s iOS with 12.1 percent with per year decrease in market share of 5.2 percent, while other operating systems amount to just 0.3 percent.[6] Linux distributions are dominant in the server and supercomputing sectors. Other specialized classes of operating systems (special-purpose operating systems)[7][8]), such as embedded and real-time systems, exist for many applications. Security-focused operating systems also exist. Some operating systems have low system requirements (i.e. light-weight Linux distribution). Others may have higher system requirements.

Some operating systems require installation or may come pre-installed with purchased computers (OEM-installation), whereas others may run directly from media (i.e. live cd) or flash memory (i.e. usb stick).

Categories
Artificial Intelligence AWS Azure Bibliography C Language C# .NET C++ Cloud Data Science - Big Data DevOps DevSecOps-Security-Privacy Django Web Framework Flask Web Framework GCP Go Programming Language Java JavaScript Kotlin Kubernetes Linux Networking Operating Systems PowerShell Python Ruby Software Engineering Spring Framework Swift TypeScript Windows Server

Udemy

See Dr. Angela Yu, Udemy’s best instructor: 100 Days of Code – The Complete Python Pro Bootcamp

Udemy, Inc. is an American massive open online course (MOOC) provider aimed at professional adults and students. It was founded in May 2010 by Eren Bali, Gagan Biyani, and Oktay Caglar.

As of February 2021, the platform has more than 40 million students, 155,000 courses and 70,000 instructors teaching courses in over 65 languages. There have been over 480 million course enrollments. Students and instructors come from 180+ countries and 2/3 of the students are located outside of the U.S.[3]

Students take courses largely as a means of improving job-related skills.[4] Some courses generate credit toward technical certification. Udemy has made a special effort to attract corporate trainers seeking to create coursework for employees of their company.[5] As of 2021, there are more than 155,000 courses on the website.[6][3]

The headquarters of Udemy is located in San Francisco, California, with offices in Denver, Colorado; Dublin, Ireland; Ankara, Turkey; Sao Paulo, Brazil; and Gurugram, India.[7]

(WP)

Sources:

Fair Use Sources:

Categories
C++ Cloud DevOps DevSecOps-Security-Privacy Software Engineering

Design Patterns: Elements of Reusable Object-Oriented Software, Gang of Four (GoF), 1994

See also: Head First Design Patterns: Building Extensible and Maintainable Object-Oriented Software, 2nd Edition, by Eric Freeman and Elisabeth Robson, 2021

Fair Use Source: B000SEIBB8 (GoF)

Design Patterns: Elements of Reusable Object-Oriented Software, 1st Edition, by Gamma Erich, Helm Richard, Johnson Ralph, Vlissides John

Design Patterns: Elements of Reusable Object-Oriented Software (1994) is a software engineering book describing software design patterns. The book was written by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, with a foreword by Grady Booch. The book is divided into two parts, with the first two chapters exploring the capabilities and pitfalls of object-oriented programming, and the remaining chapters describing 23 classic software design patterns. The book includes examples in C++ and Smalltalk.” (WP)

“It has been influential to the field of software engineering and is regarded as an important source for object-oriented design theory and practice. More than 500,000 copies have been sold in English and in 13 other languages. The authors are often referred to as the Gang of Four (GoF).[1]” (WP)

Capturing a wealth of experience about the design of object-oriented software, four top-notch designers present a catalog of simple and succinct solutions to commonly occurring design problems. Previously undocumented, these 23 patterns allow designers to create more flexible, elegant, and ultimately reusable designs without having to rediscover the design solutions themselves.

The authors begin by describing what patterns are and how they can help you design object-oriented software. They then go on to systematically name, explain, evaluate, and catalog recurring designs in object-oriented systems. With Design Patterns as your guide, you will learn how these important patterns fit into the software development process, and how you can leverage them to solve your own design problems most efficiently.

Each pattern describes the circumstances in which it is applicable, when it can be applied in view of other design constraints, and the consequences and trade-offs of using the pattern within a larger design. All patterns are compiled from real systems and are based on real-world examples. Each pattern also includes code that demonstrates how it may be implemented in object-oriented programming languages like C++ or Smalltalk.

Editorial Reviews

Design Patterns is a modern classic in the literature of object-oriented development, offering timeless and elegant solutions to common problems in software design. It describes patterns for managing object creation, composing objects into larger structures, and coordinating control flow between objects. The book provides numerous examples where using composition rather than inheritance can improve the reusability and flexibility of code. Note, though, that it’s not a tutorial but a catalog that you can use to find an object-oriented design pattern that’s appropriate for the needs of your particular application–a selection for virtuoso programmers who appreciate (or require) consistent, well-engineered object-oriented designs

Book Details

  • ASIN: B000SEIBB8
  • Publisher: Addison-Wesley Professional; 1st edition (October 31, 1994)
  • Publication date: October 31, 1994
  • Print length: 568 pages

Sources:

Fair Use Sources:

Categories
C Language C# .NET C++ Cloud DevOps Django Web Framework Flask Web Framework Go Programming Language Java JavaScript Kotlin PowerShell Python Ruby Software Engineering Spring Framework Swift TypeScript

Software design pattern

In software engineering, a software design pattern is a general, reusable solution to a commonly occurring problem within a given context in software design. It is not a finished design that can be transformed directly into source or machine code. Rather, it is a description or template for how to solve a problem that can be used in many different situations. Design patterns are formalized best practices that the programmer can use to solve common problems when designing an application or system.

Object-oriented design patterns typically show relationships and interactions between classes or objects, without specifying the final application classes or objects that are involved. Patterns that imply mutable state may be unsuited for functional programming languages, some patterns can be rendered unnecessary in languages that have built-in support for solving the problem they are trying to solve, and object-oriented patterns are not necessarily suitable for non-object-oriented languages.

Design patterns may be viewed as a structured approach to computer programming intermediate between the levels of a programming paradigm and a concrete algorithm.

In a recent review study, Wedyan and Abufakher investigate design patterns and software quality and conclude: “Our study has shown that the primary studies provide an empirical evidence on the positive effect of documentation of designs pattern instances on program comprehension, and therefore, maintainability. While this result is not surprising, it has, however, two indications. First, developers should pay more effort to add such documentation, even if in the form of simple comments in the source code. Second, when comparing results of different studies, the effect of documentation has to be considered.”[1]

Categories
C Language C# .NET C++ Cloud Data Science - Big Data DevOps Django Web Framework Flask Web Framework Go Programming Language Java JavaScript Kotlin PowerShell Python Ruby Software Engineering Spring Framework Swift TypeScript

Integrated Development Environment (IDE)

“An integrated development environment (IDE) is a software application that provides comprehensive facilities to computer programmers for software development. An IDE normally consists of at least a source code editorbuild automation tools and a debugger. Some IDEs, such as Visual Studio, NetBeans and Eclipse, contain the necessary compilerinterpreter, or both; others, such as SharpDevelop and Lazarus, do not.” (WP)

“The boundary between an IDE and other parts of the broader software development environment is not well-defined; sometimes a version control system or various tools to simplify the construction of a graphical user interface (GUI) are integrated. Many modern IDEs also have a class browser, an object browser, and a class hierarchy diagram for use in object-oriented software development.” (WP)