Categories
Artificial Intelligence Cloud Data Science - Big Data Hardware and Electronics History Software Engineering

Computing Philosophy: Logic, Order, Rules, and Clarity

“We think we are creating the system for our own purposes. We believe we are making it in our own image . . . But the computer is not really like us. It is a projection of a very slim part of ourselves: that portion devoted to logic, order, rule, and clarity.”

— Ellen Ullman, Close to the Machine: Technophilia and its Discontents

Sources:

Fair Use Sources:

Categories
Artificial Intelligence AWS Azure Bibliography Cloud Data Science - Big Data DevOps Hardware and Electronics History Networking Operating Systems Software Engineering

TTG – TechTarget Glossaries from WhatIs.com

Fair Use Source: https://whatis.techtarget.com/glossaries

See 809137 TTG-DvOp and 629581 TTG-CC

(TTG) – TechTarget Glossaries from WhatIs.com

Categories
Artificial Intelligence Bibliography Cloud Data Science - Big Data DevOps Hardware and Electronics History Networking Software Engineering

Oxford Dictionary of Computer Science

Fair Use Source: B019GXM8X8 (ODCS)

A Dictionary of Computer Science (Oxford Quick Reference) 7th Edition, by Editors Andrew Butterfield, Gerard Ngondi, Anne Kerr

Previously named A Dictionary of Computing, this bestselling dictionary has been renamed A Dictionary of Computer Science, and fully revised by a team of computer specialists, making it the most up-to-date and authoritative guide to computing available. Containing over 6,500 entries and with expanded coverage of multimedia, computer applications, networking, and personal computer science, it is a comprehensive reference work encompassing all aspects of the subject and is as valuable for home and office users as it is indispensable for students of computer science.

Terms are defined in a jargon-free and concise manner with helpful examples where relevant. The dictionary contains approximately 150 new entries including cloud computing, cross-site scripting, iPad, semantic attack, smartphone, and virtual learning environment. Recommended web links for many entries, accessible via the Dictionary of Computer Science companion website, provide valuable further information and the appendices include useful resources such as generic domain names, file extensions, and the Greek alphabet.

This dictionary is suitable for anyone who uses computers, and is ideal for students of computer science and the related fields of IT, maths, physics, media communications, electronic engineering, and natural sciences.

Book Details

  • ASIN : B019GXM8X8
  • Publisher : OUP Oxford; 7th edition (January 28, 2016)
  • Publication date : January 28, 2016
  • Print length : 641 pages
  • First edition 1983, Second edition 1986, Third edition 1990, Fourth edition 1996, Fifth edition 2004, Sixth edition 2008, Seventh edition 2016
  • ISBN 978–0–19–968897–5, ebook ISBN 978–0–19–100288–5

Preface

“The first edition of this dictionary was published in 1983 as a specialist reference work for computer professionals and for people interested in the underlying concepts and theories of computer science. Over successive editions, the work has been expanded and changed to reflect the technological and social changes that have occurred, especially the enormous growth in home computing and the Internet. In particular, the fourth edition (1996) included an additional 1700 entries catering for a wider readership. At the same time, the editors have retained the basic principles of the original book.”

“In the seventh edition of the dictionary we have followed the same line. The existing entries have been updated and over 120 new entries have been added. In particular, coverage of areas such as database management and social networking has been increased to reflect the growing importance of these areas. Some obsolete terms have been deleted, although some have been kept for their historical interest. Links to useful websites have been updated and more added. There are also six special feature spreads, giving information on selected topics.”

JL, ASK, 2015

Guide to the Dictionary

“Synonyms and generally used abbreviations are given either in brackets immediately after the relevant entry title, or occasionally in the text of the entry with some additional information or qualification.”

“A distinction is made between an acronym and an abbreviation: an acronym can be pronounced while an abbreviation cannot. The entry for an acronym usually appears at the acronym itself, whereas the entry for an abbreviation may appear either at the unabbreviated form or at the abbreviation—depending on which form is most commonly used. When a term is defined under an abbreviation, the entry for the unabbreviated form simply cross-refers the reader to the abbreviation.”

“Some terms listed in the dictionary are used both as nouns and verbs. This is usually indicated in the text of an entry if both forms are in common use. In many cases a noun is also used in an adjectival form to qualify another noun. This occurs too often to be noted.”

Fair Use Source: B019GXM8X8 (ODCS)

Categories
Artificial Intelligence Bibliography Cloud Data Science - Big Data Hardware and Electronics History Linux Networking Operating Systems Software Engineering

Bibliography of the History of Technology, Computing, IT, Internet and Programming

Return to Timeline of the History of Computers or History

Books

Alexander, Charles C. Holding the Line: The Eisenhower Era, 1952–1961. Bloomington: Indiana University Press, 1975.

Baran, Paul.“Packet Switching.” In Fundamentals of Digital Switching. 2d ed. Edited by John C. McDonald. New York: Plenum Press, 1990.

Barry, John A. Technobabble. Cambridge: MIT Press, 1991.

Bell, C. Gordon, Alan Kotok, Thomas N. Hastings, and Richard Hill. “The Evolution of the DEC System-10.” In Computer Engineering: A DEC View of Hardware Systems Design. Edited by C. Gordon Bell, J. Craig Mudge, and John E. McNamara. Bedford, Mass.: Digital Equipment Corporation, 1978.

Bell, C. Gordon, Gerald Butler, Robert Gray, John E. McNamara, Donald Vonada, and Ronald Wilson. “The PDP-1 and Other 18-Bit Computers.” In Computer Engineering: A DEC View of Hardware Systems Design. Edited by C. Gordon Bell, J. Craig Mudge, and John E. McNamara. Bedford, Mass.: Digital Equipment Corporation, 1978.

Bergaust, Erik. Wernher von Braun. Washington, D.C.: National Space Institute, 1976.

Blanc, Robert P., and Ira W. Cotton, eds. Computer Networking. New York: IEEE Press, 1976.

Brendon, Piers. Ike: His Life and Times. New York: Harper & Row, 1986.

Brooks, John. Telephone: The First HundredYears. New York: Harper & Row, 1976.

Brucker, Roger W., and Richard A. Watson. The Longest Cave. New York: Alfred A. Knopf, 1976.

Clarke, Arthur C., et al. The Telephone’s First Century—And Beyond: Essays on the Occasion of the 100th Anniversary of Telephone Communication. New York: Thomas Y. Crowell Company, 1977

Computer Science, Numerical Analysis and Computing. National Physical Laboratory, Engineering Sciences Group, Research 1971. London: Her Majesty’s Stationery Office, 1972.

Froehlich, Fritz E., Allen Kent, and Carolyn M. Hall, eds. “ARPANET, the Defense Data Network, and Internet.” In The Froehlich/Kent Encyclopedia of Telecommunications. New York: Marcel Dekker, Inc., 1991.

Goldstein, Jack S. A Different Sort of Time: The Life of Jerrold R. Zacharias. Cambridge MIT Press, 1992.

Halberstam, David. The Fifties. New York:Villard Books, 1993.

Hall, Mark, and John Barry. Sunburst: The Ascent of Sun Microsystems. Chicago: Contemporary Books, 1990.

Hammond, William M. Public Affairs: The Military and the Media, 1962–1968. Washington, D.C.: Center of Military History, U.S. Army, Superintendent of Documents, U.S. Government Printing Office, 1968.

Hamner, W. Clay. “The United States Postal Service: Will It Be Ready for the Year 2000?” In The Future of the Postal Service. Edited by Joel L. Fleishman. New York: Praeger, 1983.

Holzmann, Gerard J., and Björn Pehrson. The Early History of Data Network. Los Alamitos, Calif.: IEEE Computer Society Press, 1995.

Kidder, Tracy. The Soul of a New Machine. Boston: Little, Brown, 1981.

Killian, James R., Jr. Sputnik, Scientists, and Eisenhower: A Memoir of the First Special Assistant to the President for Science and Technology. Cambridge: MIT Press, 1977.

———. The Education of a College President: A Memoir. Cambridge: MIT Press, 1985.

Kleinrock, Leonard. Communication Nets: Stochastic Message Flow and Delay. New York: McGraw-Hill, 1964.

———. Queueing Systems. 2 vols. New York: John Wiley & Sons, 1974–1976.

Langdon-Davies, John. NPL: Jubilee Book of the National Physical Laboratory. London: His Majesty’s Stationery Office, 1951.

Lebow, Irwin. Information Highways & Byways: From the Telegraph to the 21st Century. New York: IEEE Press, 1995.

Licklider, J. C. R. “Computers and Government.” In The Computer Age: A Twenty-Year View, edited by Michael L. Dertouzos and Joel Moses. MIT Bicentennial Series. Cambridge: MIT Press, 1979.

———. Libraries of the Future. Cambridge: MIT Press, 1965.

Padlipsky, M. A. The Elements of Networking Style and Other Essays & Animadversions of the Art of Intercomputer Networking. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1985.

Proceedings of the Fifth Data Communications Symposium. IEEE Computer Society, Snowbird, Utah, September 27–29, 1977.

Pyatt, Edward. The National Physical Laboratory: A History. Bristol, England: Adam Hilger Ltd., 1983.

Redmond, Kent C., and Thomas M. Smith. The Whirlwind Project: The History of a Pioneer Computer. Bedford, Mass.: Digital Press, 1980.

Rheingold, Howard. The Virtual Community. New York: Harper Perennial, 1994.

———. Tools for Thought: The People and Ideas Behind the Next Computer Revolution. New York: Simon & Schuster, 1988.

Roberts, Lawrence G. “The ARPANET and Computer Networks.” In A History of Personal Workstations, edited by Adele Goldberg. Reading, Mass.: ACM Press (Addison-Wesley), 1988.

Rose, Marshall T. The Internet Message: Closing the Book with Electronic Mail. Englewood Cliffs, N.J.: PTR Prentice Hall, 1993.

Sherman, Kenneth. Data Communications: A User’s Guide. Reston,Virginia: Reston Publishing Company, 1981.

Smith, Douglas K., and Robert C. Alexander. Fumbling the Future: How Xerox Invented, then Ignored, the First Personal Computer. New York: William Morrow, 1988.

Udall, Stewart L. The Myths of August: A Personal Exploration of Our Tragic Cold War Affair with the Atom. New York: Pantheon, 1994.

Wildes, Karl L., and Nilo A. Lindgren. A Century of Electrical Engineering and Computer Science at MIT, 1882–1982. Cambridge, Mass.: MIT Press, 1985.

Winner, Langdon. The Whale and the Reactor: A Search for Limits in an Age of High Technology. Chicago: University of Chicago Press, 1986.Edit

Journal, Magazine, and Newspaper Articles

Abramson, Norman. “Development of the Alohanet.” IEEE Transactions on Information Theory, January 1985.

Anderson, Christopher. “The Accidental Superhighway.” The Economist, 1 July 1995.

Baran, Paul. “On Distributed Communications Networks.” IEEE Transactions on Communications Systems, 1 March 1964.

———.“Reliable Digital Communications Systems Using Unreliable Network Repeater Nodes.” RAND Corporation Mathematics Division Report No. P-1995, 27 May 1960.

Boggs, David R., John F. Shoch, Edward A. Taft, and Robert M. Metcalfe. “PUP: An Internetwork Architecture.” IEEE Transactions on Communications, April 1980.

“Bolt Beranek Accused by Government of Contract Overcharges.” Dow Jones News Service–Wall Street Journal combined stories, 27 October 1980.

“Bolt Beranek and Newman: Two Aides Plead Guilty to U.S. Charge.” Dow Jones News Service–Wall Street Journal combined stories, 12 November 1980.

“Bolt Beranek, Aides Accused of Cheating U.S. on Several Jobs.” The Wall Street Journal, 28 October 1980.

Bulkeley, William M. “Can He Turn Big Ideas into Big Sales?” The Wall Street Journal, 12 September 1994.

Bush,Vannevar. “As We May Think.” Atlantic Monthly, July 1945.

Campbell-Kelly, Martin. “Data Communications at the National Physical Laboratory: 1965–1975.” Annals of the History of Computing 9, no. 3/4, 1988.

Cerf,Vinton G., and Peter T. Kirstein. “Issues in Packet-Network Interconnection.” Proceedings of the IEEE, November 1979.

Cerf, Vinton G., and Robert E. Kahn. “A Protocol for Packet-Network Intercommunication.” IEEE Transactions on Communications, May 1974.

Cerf, Vinton. “PARRY Encounters the Doctor: Conversation Between a Simulated Paranoid and a Simulated Psychiatrist.” Datamation, July 1973.

Clark, David D. “The Design Philosophy of the DARPA Internet Protocols.” Proceedings of the Association for Computing Machinery Sigcomm Symposium on Data Communications, August 1988.

Clark, David D., Kenneth T. Pogran, and David P. Reed. “An Introduction to Local Area Networks.” Proceedings of the IEEE, November 1979.

Comer, Douglas. “The Computer Science Research Network CSNET: A History and Status Report.” Communications of the ACM, October 1983.

Crowther, W. R., F. E. Heart, A. A. McKenzie, J. M. McQuillan, and D. C. Walden.“Issues in Packet Switching Networking Design.” Proceedings of the 1975 National Computer Conference, 1975.

Denning, Peter J. “The Science of Computing: The ARPANET After Twenty Years.” American Scientist, November-December 1989.

Denning, Peter J., Anthony Hearn, and C. William Kern. “History and Overview of CSNET. “Proceedings of the Association for Computing Machinery Sigcomm Symposium on Data Communications, March 1983.

“Dr. J. C. R. Licklider Receives Biennial Award at State College Meeting.” The Journal of the Acoustical Society of America, November 1950.

Engelbart, Douglas C. “Coordinated Information Services for a Discipline-or Mission-Oriented Community.” Proceedings of the Second Annual Computer Communications Conference, January 1972.

———. “Intellectual Implications of Multi-Access Computer Networks.” Proceedings of the Interdisciplinary Conference on Multi-Access Computer Networks, Austin, Texas, April 1970.

Ericson, Raymond. “Philharmonic Hall Acoustics Start Rumors Flying.” The NewYork Times, 4 December 1962.

Finucane, Martin. “Creators of the Internet Forerunner Gather in Boston.” Reading (Mass.) Daily Times Herald, 12 September 1994.

Fisher, Sharon. “The Largest Computer Network: Internet Links UNIX Computers Worldwide.” InfoWorld, 25 April 1988.

Hines, William. “Mail.” Chicago Sun-Times, 29 March 1978.

Haughney, Joseph F. “Anatomy of a Packet-Switching Overhaul.” Data Communications, June 1982.

Holusha, John. “Computer Tied Carter, Mondale Campaigns: The Bethesda Connection.” Washington Star, 21 November 1976.

Jacobs, Irwin M., Richard Binder, and EstilV. Hoversten. “General Purpose Packet Satellite Networks.” Proceedings of the IEEE, November 1978.

Jennings, Dennis M., Lawrence H. Landweber, Ira H. Fuchs, David J. Farber, and W. Richards Adrion. “Computer Networking for Scientists.” Science, 22 February 1986.

Kahn, Robert E. “The Role of Government in the Evolution of the Internet.” Communications of the ACM, August 1994.

Kahn, Robert E., Steven A. Gronemeyer, Jerry Burchfiel, and Ronald C. Kunzelman. “Advances in Packet Radio Technology.” Proceedings of the IEEE, November 1978.

Kantrowitz, Barbara, and Adam Rogers. “The Birth of the Internet.” Newsweek, 8 August 1994.

Kleinrock, Leonard. “Principles and Lessons in Packet Communications.” Proceedings of the IEEE, November 1978.

Landweber, Lawrence H., Dennis M. Jennings, and Ira Fuchs. “Research Computer Networks and Their Interconnection.” IEEE Communications Magazine, June 1986.

Lee, J. A. N., and Robert F. Rosin.“The CTSS Interviews.” IEEE Annals of the History of Computing 14, no. 1, 1992.

———.“The Project MAC Interviews.” IEEE Annals of the History of Computing 14, no. 2, 1992.

Licklider, J. C. R. “A Gridless, Wireless Rat-Shocker.” Journal of Comparative and Physiological Psychology 44, 1951.

———. “Man-Computer Symbiosis.” Reprint. In Memoriam: J. C. R. Licklider. Digital Equipment Corporation Systems Research Center, 7 August 1990.

Licklider, J. C. R., and Albert Vezza. “Applications of Information Networks.” Proceedings of the IEEE, November 1978.

Licklider, J. C. R., and Robert W. Taylor. “The Computer as a Communication Device.” Reprint. In Memoriam: J. C. R. Licklider. Digital Equipment Corporation Systems Research Center, 7 August 1990.

Markoff, John. “Up from the Computer Underground.” The NewYork Times, 27 August 1993.

McKenzie, Alexander A., and B. P. Cosell, J. M. McQuillan, M. J. Thrope. “The Network Control Center for the ARPA Network.” Proceedings of the IEEE, 1972.

Mier, Edwin E. “Defense Department Readying Network Ramparts.” Data Communications, October 1983.

Mills, Jeffrey. “Electronic Mail.” Associated Press, 4 January 1976.

———.“Electronic Mail.” Associated Press, 19 June 1976.

———. “Postal Service Tests Electronic Message Service.” Associated Press, 28 March 1978.

Mills, Kay.“The Public Concern: Mail.” Newhouse News Service, 27 July 1976.

Mohl, Bruce A. “2 Bolt, Beranek Officials Collapse in Federal Court.” The Boston Globe, 31 October 1980.

Pallesen, Gayle. “Consultant Firm on PBIA Faces Criminal Charges.” Palm Beach (Florida) Post, 8 November 1980.

Pearse, Ben. “Defense Chief in the Sputnik Age.” The NewYork Times Magazine, 10 November 1957.

Pool, Bob. “Inventing the Future: UCLA Scientist Who Helped Create Internet Isn’t Done Yet.” Los Angeles Times, 11 August 1994.

Quarterman, John S., and Josiah C. Hoskins. “Notable Computer Networks.” Communications of the ACM, October 1986.

Roberts, Lawrence G. “ARPA Network Implications.” Educom, Bulletin of the Interuniversity Communications Council, fall 1971.

Salus, Peter. “Pioneers of the Internet.” Internet World, September 1994.

“Scanning the Issues,” IEEE Spectrum, August 1964.

Schonberg, Harold C. “4 Acoustics Experts to Urge Revisions in Auditorium.” The NewYork Times, 4 April 1963.

———.“Acoustics Again: Philharmonic Hall Has Some Defects, But Also Has a Poetry of Its Own.” The NewYork Times, 9 December 1962.

Selling It. Consumer Reports, June 1977.

Space Agencies. “ARPA Shapes Military Space Research.” Aviation Week, 16 June 1958.

Sterling, Bruce. “Internet.” Fantasy and Science Fiction, February 1993.

Swartzlander, Earl. “Time-Sharing at MIT.” IEEE Annals of the History of Computing 14, no. 1, 1992.

“Transforming BB&N: ARPANET’s Architect Targets Non-Military Networks.” Data Communications, April 1984.

Wilson, David McKay. “BBN Executives Collapse in Court.” Cambridge (Mass.) Chronicle, 6 November 1980.

———. “Consulting Co. Admits Overcharge.” Cambridge (Mass.) Chronicle, 30 October 1980.

Zitner, Aaron. “A Quiet Leap Forward in Cyberspace.” The Boston Globe, 11 September 1994.

Zuckerman, Laurence.“BBN Steps Out of the Shadows and into the Limelight.” The NewYork Times, 17 July 1995.Edit

Unpublished Papers, Interviews from Secondary Sources, and Other Documents

”Act One.” Symposium on the history of the ARPANET held at the University of California at Los Angeles, 17 August 1989. Transcript.

ARPA Network Information Center, Stanford Research Institute, Menlo Park, Calif. “Scenarios for Using the ARPANET.” Booklet. Prepared for the International Conference on Computer Communication, Washington, D.C., October 1972.

Baran, Paul. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 5 March 1990.

Barlow, John Perry. “Crime and Puzzlement.” Pinedale, Wyo., June 1990.

BBN Systems and Technologies Corporation. “Annual Report of the Science Development Program.” Cambridge, Mass., 1988.

Bhushan, A. K. “Comments on the File Transfer Protocol.” Request for Comments 385. Stanford Research Institute, Menlo Park, Calif., August 1972.

———.“The File Transfer Protocol.” Request for Comments 354. Stanford Research Institute, Menlo Park, Calif., July 1972.

Bhushan, Abhay, Ken Pogran, Ray Tomlinson, and Jim White. “Standardizing Network Mail Headers.” Request for Comments 561. MIT, Cambridge, Mass., 5 September 1973.

Blue, Allan. Interview by William Aspray. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 12 June 1989.

Bolt Beranek and Newman Inc. “ARPANET Completion Report: Draft.” Cambridge, Mass., September 1977.

———.“BBN Proposal No. IMP P69-IST-5: Interface Message Processors for the ARPA Computer Network.” Design proposal. Submitted to the Department of the Army, Defense Supply Service, in response to RFQ No. DAHC15 69 Q 0002. Washington, D.C., 6 September 1968.

———. “BBN Report No. 1763: Initial Design for Interface Message Processors for the ARPA Computer Network.” Design proposal. Submitted to the Advanced Research Projects Agency under contract no. DAHC 15-69-C-0179. Washington, D.C., 6 January 1969.

———. “BBN Report No. 1822: Interface Message Processor.” Technical report. Cambridge, Mass., 1969.

———.“Interface Message Processors for the ARPA Computer Network.” Quarterly technical reports. Submitted to the Advanced Research Projects Agency under contract no. DAHC 15-69-C-0179 and contract no. F08606-73-C-0027. Washington, D.C., 1969–1973.

———. “Operating Manual for Interface Message Processors: 516 IMP, 316 IMP, TEP.” Revised. Submitted to the Advanced Research Projects Agency under ARPA order no. 1260, contract no. DAHC15-69-C-0179. Arlington,Va., April 1973.

———. “Report No. 4799: A History of the ARPANET: The First Decade.” Submitted to the Defense Advanced Research Projects Agency. Arlington,Va., April 1981.

———.“The Four Cities Plan.” Draft proposal and cost analysis for maintenance of IMPs and TIPs in Boston, Washington, Los Angeles, and San Francisco. Papers of BBN Division 6. Cambridge, Mass., April 1974.

———. Internal memoranda and papers relating to the work of Division 6. Cambridge, Mass., 1971–1972.

Carr, C. Stephen, Stephen D. Crocker, and Vinton G. Cerf. “HOST-HOST Communication Protocol in the ARPA Network.” Paper presented at the Spring Joint Computer Conference of the American Federation of Information Processing Societies, 1970.

Catton, Major General, USAF, Jack. Letter to F. R. Collbohm of RAND Corporation, 11 October 1965. Referring the preliminary technical development plan for message-block network to the Defense Communications Agency.

Cerf,Vinton G.“Confessions of a Hearing-Impaired Engineer.” Unpublished.

———.“PARRY Encounters the Doctor.” Request for Comments 439 (NIC 13771). Network Working Group, 21 January 1973.

Cerf, Vinton G., and Jonathan B. Postel. “Specification of Internetwork Transmission Control Protocol: TCP Version 3.” Information Sciences Institute, University of Southern California, January 1978.

Cerf, Vinton G. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/ IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 24 April 1990.

Cerf, Vinton G., and Robert Kahn. “HOST and PROCESS Level Protocols for Internetwork Communication.” Notes of the International Network Working Group 39, 13 September 1973.

Clark, Wesley. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 3 May 1990.

Crocker, David H. “Standard for the Format of ARPA Internet Text Messages.” Request for Comments 822. Department of Electrical Engineering, University of Delaware, 13 August 1982.

Crocker, David H., John J. Vittal, Kenneth T. Pogran, and D. Austin Henderson Jr. “Standard for the Format of ARPA Network Text Messages.” Request for Comments 733. The RAND Corporation, Santa Monica, Calif., 21 November 1977.

Crowther, William. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 12 March 1990.

Crowther, William, and David Walden. “CurrentViews of Timing.” Memorandum to Frank E. Heart, Cambridge, Mass., 8 July 1969.

Davies, Donald W. “Further Speculations on Data Transmission.” Private papers. London, 16 November 1965.

———.“Proposal for a Digital Communication Network.” Private papers, photocopied and widely circulated. London, June 1966.

———. “Proposal for the Development of a National Communications Service for On-Line Data Processing.” Private papers. London, 15 December 1965.

———. “Remote On-line Data Processing and Its Communication Needs.” Private papers. London, 10 November 1965.

Davies, Donald W. Interview by Martin Campbell-Kelly. National Physical Laboratory, U.K., 17 March 1986.

Davies, Donald W., Keith Bartlett, Roger Scantlebury, and Peter Wilkinson. “A Digital Communications Network for Computers Giving Rapid Response at Remote Terminals.” Paper presented at the Association for Computing Machinery Symposium on Operating System Principles, Gatlinburg, Tenn., October 1967.

Davis, Ruth M. “Comments and Recommendations Concerning the ARPA Network.” Center for Computer Sciences and Technology, U.S. National Bureau of Standards, 6 October 1971.

Digital Equipment Corporation. “Interface Message Processors for the ARPA Computer Network.” Design proposal. Submitted to the Department of the Army, Defense Supply Service, in RFQ no. DAHC15 69 Q 002, 5 September 1968.

Frank, Howard. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 30 March 1990.

Goldstein, Paul. “The Proposed ARPANET Divestiture: Legal Questions and Economic Issues.” Working Paper, Cabledata Associates, Inc., CAWP no. 101, 27 July 1973.

Hauben, Michael, and Ronda Hauben. The Netizens Netbook page can be found at http://www.columbia.edu/∼hauben/netbook/. The Haubens’ work has also appeared in the Amateur Computerist Newsletter, available from ftp://wuarchive.wustl.edu/doc/misc/acn/.

Heart, F. E., R. E. Kahn, S. M. Ornstein, W. R. Crowther, and D. C. Walden. “The Interface Message Processor for the ARPA Computer Network.” Paper presented at the Spring Joint Computer Conference of the American Federation of Information Processing Societies, 1970.

Heart, Frank E. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 13 March 1990.

Herzfeld, Charles. Interview by Arthur Norberg. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 6 August 1990.

Honeywell, Inc. “Honeywell at Bolt Beranek and Newman, Inc.” Brochure. Published for the ARPA Network demonstration at the International Conference on Computer Communication, Washington, D.C., October 1972.

Information Sciences Institute, University of Southern California. “DOD Standard Transmission Control Protocol.” Request for Comments 761. Prepared for the Defense Advanced Research Projects Agency, Information Processing Techniques Office, Arlington,Va., January 1980.

International Data Corporation. “ARPA Computer Network Provides Communications Technology for Computer/Computer Interaction Within Special Research Community.” Industry report and market review. Newtonville, Mass., 3 March 1972.

Kahn, Robert. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 24 April 1990.

Kahn, Robert. Interview by William Aspray. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 22 March 1989.

Kleinrock, Leonard. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 3 April 1990.

Kryter, Karl D. “Lick as a Psychoacoustician and Physioacoustician.” Presentation honoring J. C. R. Licklider at the Meeting of the Acoustical Society of America, Baltimore, Md., 30 April 1991.

———. Obituary of J. C. R. Licklider, Journal of the Acoustical Society of America, December 1990.

Licklider, J. C. R., and Welden E. Clark. “On-Line Man-Computer Communication.” Paper presented at the Spring Joint Computer Conference of the American Federation of Information Processing Societies, 1962.

Licklider, J. C. R. Interview by William Aspray. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 28 October 1988.

Lukasik, Stephen. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 17 October 1991.

Marill, Thomas, and Lawrence G. Roberts. “Toward a Cooperative Network of Time-Shared Computers.” Paper presented at the Fall Joint Computer Conference of the American Federation of Information Processing Societies, 1966.

McCarthy, J., S. Boilen, E. Fredkin, and J. C. R. Licklider. “A Time-Sharing Debugging System for a Small Computer.” Paper presented at the Spring Joint Computer Conference of the American Federation of Information Processing Societies, 1963.

McKenzie, Alexander A. “The ARPA Network Control Center.” Paper presented at the Fourth Data Communications Symposium of the Institute for Electrical and Electronics Engineers, October 1975.

McKenzie, Alexander A. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 13 March 1990.

Message Group. The full text of more than 2,600 e-mail messages sent by members of the Message Group (or MsgGroup), one of the first electronic mailing lists, relating to the development of e-mail. The Computer Museum, Boston, Mass., June 1975–June 1986. Electronic document. (http://www.tcm.org/msgroup)

Metcalfe, Robert. “Some Historic Moments in Networking.” Request for Comments 89. Network Working Group, 19 January 1971.

Myer, T. H., and D. A. Henderson. “Message Transmission Protocol.” Request for Comments 680. Stanford Research Institute, Menlo Park, Calif., 1975.

National Research Council, Commission on Engineering and Technical Systems. “Transport Protocols for Department of Defense Data Networks.” Report to the Department of Defense and the National Bureau of Standards, Board on Telecommunication and Computer Applications, 1985.

Neigus, N.J. “File Transfer Protocol.” Request for Comments 542. Bolt Beranek and Newman Inc., Cambridge, Mass., 12 July 1973.

Norberg, Arthur L., and Judy E. O’Neill. “A History of the Information Processing Techniques Office of the Defense Advanced Research Projects Agency.” Charles Babbage Institute, University of Minnesota, Minneapolis, Minn., 1992.

Ornstein, Severo M., F. E. Heart, W. R. Crowther, H. K. Rising, S. B. Russell, and A. Michel. “The Terminal IMP for the ARPA Network.” Paper presented at the Spring Joint Computer Conference of the American Federation of Information Processing Societies, Atlantic City, N.J., May 1972.

Ornstein, Severo. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 6 March 1990.

Pogran, Ken, John Vittal, Dave Crowther, and Austin Henderson. “Proposed Official Standard for the Format of ARPA Network Messages.” Request for Comments 724. MIT, Cambridge, Mass., 12 May 1977.

Postel, Jonathan B. “Simple Mail Transfer Protocol.” Request for Comments 821. Information Sciences Institute, University of Southern California, August 1982.

———. “Specification of Internetwork Transmission Control Protocol: TCP Version 4.” Information Sciences Institute, University of Southern California, September 1978.

———. “TCP and IP Bake Off.” Request for Comments 1025. Network Working Group, September 1987.

Pouzin, Louis. “Network Protocols.” Notes of the International Network Working Group 50, September 1973.

———.“Presentation and Major Design Aspects of the Cyclades Computer Network.” Paper presented at the IEEE Third Data Communications Symposium (Data Networks: Analysis and Design), November 1973.

———. “Experimental Communication Protocol: Basic Message Frame.” Notes of the International Network Working Group 48, January 1974.

———.“Interconnection of Packet Switching Networks.” Notes of the International Network Working Group 42, October 1973.

———. “Network Architecture and Components.” Notes of the International Network Working Group 49, August 1973.

RAND Corporation. “Development of the Distributed Adaptive Message-Block Network.” Recommendation to the Air Staff, 30 August 1965.

RCA Service Company, Government Services Division. “ARPANET Study Final Report.” Submitted under contract no. F08606-73-C-0018. 24 November 1972.

Richard J. Barber Associates, Inc. “The Advanced Research Projects Agency: 1958–1974.” A study for the Advanced Research Projects Agency under contract no. MDA-903-74-C-0096. Washington, D.C., December 1975. Photocopy.

Roberts, Lawrence G. “Extensions of Packet Communications Technology to a Hand-Held Personal Terminal.” Paper presented at the Spring Joint Computer Conference of the American Federation of Information Processing Societies, May 1972.

———. “Multiple Computer Networks and Intercomputer Communication.” Paper presented at the Association for Computing Machinery Symposium on Operating System Principles, October 1967.

Roberts, Lawrence G., and Barry D. Wessler. “Computer Network Development to Achieve Resource Sharing.” Paper presented at the Spring Joint Computer Conference of the American Federation of Information Processing Societies, 1970.

Roberts, Lawrence G. Interview by Arthur Norberg. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 4 April 1989.

Ruina, Jack. Interview by William Aspray. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 20 April 1989.

Sutherland, Ivan. Interview by William Aspray. Charles Babbage Institute DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 1 May 1989.

Taylor, Robert. Interview by William Aspray. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 28 February 1989.

U.S. Postal Service. “Electronic Message Systems for the U.S. Postal Service.” Report of the U.S.P.S. Support Panel, Committee on Telecommunications, Washington, D.C., January 1977.

Walden, David C. “Experiences in Building, Operating, and Using the ARPA Network.” Paper presented at the Second USA-Japan Computer Conference, Tokyo, Japan, August 1975.

Walden, David. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 6 February 1990.

Walker, Stephen T. “Completion Report: ARPA Network Development.” Defense Advanced Research Projects Agency, Information Processing Techniques Office, Washington, D.C., 4 January 1978.

Weik, Martin H. “A Third Survey of Domestic Electronic Digital Computing Systems.” Ballistic Research Laboratories, report no. 1115, March 1961.

White, Jim. “Proposed Mail Protocol.” Request for Comments 524. Stanford Research Institute, Menlo Park, Calif., 13 June 1973.

Zimmermann, H., and M. Elie. “Proposed Standard Host-Host Protocol for Heterogeneous Computer Networks: Transport Protocol.” Notes of the International Network Working Group 43, December 1973.Edit

Electronic Archives

Charles Babbage Institute, Center for the History of Information Processing, University of Minnesota. Large archival collection relating to the history of computing. More information can be obtained via the CBI Web site at http://cbi.itdean.umn.edu/cbi/welcome.html or via e-mail addressed to bruce@fs1.itdean.umn.edu.

Computer Museum, Boston, Massachusetts. Large collection relating to the history of computing, including the archives of the Message Group concerning the early development of e-mail. The archive is available via the homepage at http://www.tcm.org/msgroup.

Information Sciences Institute, University of Southern California. Collection includes up-to-date indexes and tests of Internet standards, protocols, Requests for Comments (RFCs), and various other technical notes available via the ISI Web site: http://www.isi.edu. Some of the earlier RFCs are not available electronically, but are archived off-line in meticulous fashion by RFC editor Jon Postel. A searchable archive is maintained at http://info.internet.isi.edu:80/in-notes/rfc.

Ohio State University, Department of Computer and Information Science. The CIS Web Server offers access to RFCs and various other technical and historical documents related to the Internet via http://www.cis. ohio-state.edu:80/hypertext/information/rfc.html.

Primary Fair Use Source: B000FC0WP6

Secondary Fair Use Sources:

Categories
Artificial Intelligence Bibliography Cloud Data Science - Big Data Hardware and Electronics History Linux Networking Operating Systems Software Engineering

Where Wizards Stay Up Late – The Origins Of The Internet

Return to Timeline of the History of Computers or History

Fair Use Source: B000FC0WP6

Where Wizards Stay Up Late – The Origins Of The Internet by Matthew Lyon and Katie Hafner

by Matthew Lyon and Katie Hafner

“Twenty five years ago, it didn’t exist. Today, twenty million people worldwide are surfing the Net. Where Wizards Stay Up Late is the exciting story of the pioneers responsible for creating the most talked about, most influential, and most far-reaching communications breakthrough since the invention of the telephone.”

“In the 1960’s, when computers where regarded as mere giant calculators, J.C.R. Licklider at MIT saw them as the ultimate communications devices. With Defense Department funds, he and a band of visionary computer whizzes began work on a nationwide, interlocking network of computers. Taking readers behind the scenes, Where Wizards Stay Up Late captures the hard work, genius, and happy accidents of their daring, stunningly successful venture.”Edit

Book Details

  • Print length: 304 pages
  • Publication date: August 19, 1999
  • ASIN: B000FC0WP6
  • Publisher: Simon & Schuster
  • ISBN: 0684832674

Table of Contents

  • Prologue
  • 1. The Fastest Million Dollars
  • 2. A Block Here, Some Stones There
  • 3. The Third University
  • 4. Head Down in the Bits
  • 5. Do It to It Truett
  • 6. Hacking Away and Hollering
  • 7. E-Mail
  • 8. A Rocket on Our Hands
  • Epilogue
  • Chapter Notes
  • Bibliography
  • Acknowledgments
  • Index

Dedication

To the memory of J. C. R. Licklider and to the memory of Cary Lu

Los Alamos’ lights where wizards stay up late, (Stay in the car, forget the gate), To save the world or end it, time will tell” — James Merrill, “Under Libra: Weights and Measures

Fair Use Sources:

Categories
Artificial Intelligence AWS Azure Cloud Data Science - Big Data DevOps DevSecOps-Security-Privacy GCP Hardware and Electronics Kubernetes Linux Networking Operating Systems PowerShell Python Software Engineering Windows Server

IaC Infrastructure as Code

Return to Timeline of the History of Computers, Networking

Infrastructure as code (IaC) is the process of managing and provisioning computer data centers through machine-readable definition files, rather than physical hardware configuration or interactive configuration tools.[1] The IT infrastructure managed by this process comprises both physical equipment, such as bare-metal servers, as well as virtual machines, and associated configuration resources. The definitions may be in a version control system. It can use either scripts or declarative definitions, rather than manual processes, but the term is more often used to promote declarative approaches.

Fair Use Sources:

Categories
Cloud DevOps DevSecOps-Security-Privacy Hardware and Electronics History Networking Software Engineering

Reliability Engineering

Return to Timeline of the History of Computers, Networking

Reliability engineering is a sub-discipline of systems engineering that emphasizes the ability of equipment to function without failure. Reliability describes the ability of a system or component to function under stated conditions for a specified period of time.[1] Reliability is closely related to availability, which is typically described as the ability of a component or system to function at a specified moment or interval of time.

The Reliability function is theoretically defined as the probability of success at time t, which is denoted R(t). This probability is estimated from previous data sets or through reliability testing. AvailabilityTestabilitymaintainability and maintenance are often defined as a part of “reliability engineering” in reliability programs. Reliability can play a key role in the cost-effectiveness of systems; for example, a consumer product in many cases will have a higher resale value, if it fails less often.

Reliability and quality are closely related. Normally quality focuses on the prevention of defects during the warranty phase whereas reliability looks at preventing failures during the useful lifetime of the product or system from commissioning, through operation, to decommissioning [2].

Reliability engineering deals with the prediction, prevention and management of high levels of “lifetime” engineering uncertainty and risks of failure. Although stochastic parameters define and affect reliability, reliability is not only achieved by mathematics and statistics.[3][4] Reliability engineering can be achieved through process and reliability testing. “Nearly all teaching and literature on the subject emphasize these aspects, and ignore the reality that the ranges of uncertainty involved largely invalidate quantitative methods for prediction and measurement.”[5] For example, it is easy to represent “probability of failure” as a symbol or value in an equation, but it is almost impossible to predict its true magnitude in practice, which is massively multivariate, so having the equation for reliability does not begin to equal having an accurate predictive measurement of reliability.

Reliability engineering relates closely to Quality Engineering, safety engineering and system safety, in that they use common methods for their analysis and may require input from each other. It can be said that a system must be reliably safe.

Reliability engineering focuses on costs of failure caused by system downtime, cost of spares, repair equipment, personnel, and cost of warranty claims.

Fair Use Sources:

Categories
Artificial Intelligence Cloud Data Science - Big Data DevOps DevSecOps-Security-Privacy Hardware and Electronics History Networking Software Engineering

Computer Science

Return to Timeline of the History of Computers, Networking

Computer science is the study of algorithmic processes and computational machines.[1][2] As a discipline, computer science spans a range of topics from theoretical studies of algorithmscomputation and information to the practical issues of implementing computing systems in hardware and software.[3][4] Computer science addresses any computational problems, especially information processes, such as controlcommunicationperceptionlearning, and intelligence.[5][6][7]

Its fields can be divided into theoretical and practical disciplines. For example, the theory of computation concerns abstract models of computation and general classes of problems that can be solved using them, while computer graphics and computational geometry emphasize more specific applications. Algorithmics have been called the heart of computer science.[8] Programming language theory considers approaches to the description of computational processes, while computer programming involves the use of them to create complex systemsComputer architecture describes construction of computer components and computer-controlled equipment. Artificial intelligence aims to synthesize goal-orientated processes such as problem-solving, decision-making, environmental adaptation, planning and learning found in humans and animals. According to Peter Denning, the fundamental question underlying computer science is, “What can be automated?”.[9][5] Unlike other computing paradigms, computer scientists are focused on academic research.

Fair Use Sources:

Categories
Artificial Intelligence Cloud Data Science - Big Data DevOps Hardware and Electronics History Networking Software Engineering

Computer Scientist

Return to Timeline of the History of Computers, Networking

computer scientist is a person who has acquired the knowledge of computer science, the study of the theoretical foundations of information and computation and their application.[1]

Computer scientists typically work on the theoretical side of computer systems, as opposed to the hardware side on which computer engineers mainly focus (although there is overlap). Although computer scientists can also focus their work and research on specific areas (such as algorithm and data structure development and design, software engineeringinformation theorydatabase theorycomputational complexity theorynumerical analysisprogramming language theorycomputer graphics, and computer vision), their foundation is the theoretical study of computing from which these other fields derive.[2]

A primary goal of computer scientists is to develop or validate models, often mathematical, to describe the properties of computer-based systems (processors, programs, computers interacting with people, computers interacting with other computers, etc.) with an overall objective of discovering designs that yield useful benefits (faster, smaller, cheaper, more precise, etc.).

Fair Use Sources:

Categories
Cloud DevOps Hardware and Electronics History Networking

System Administrator SysAdmin

Return to Timeline of the History of Computers, Networking

system administrator, or sysadmin, is a person who is responsible for the upkeep, configuration, and reliable operation of computer systems; especially multi-user computers, such as servers. The system administrator seeks to ensure that the uptimeperformanceresources, and security of the computers they manage meet the needs of the users, without exceeding a set budget when doing so.

To meet these needs, a system administrator may acquire, install, or upgrade computer components and software; provide routine automation; maintain security policies; troubleshoot; train or supervise staff; or offer technical support for projects.

Fair Use Sources:

Categories
Hardware and Electronics History Networking

VoIP Voice over Internet Protocol – Broadband Phone – Internet Telephone

Return to Timeline of the History of Computers

Fair Use Sources:

Categories
Hardware and Electronics History Networking

Sharp Corporation

Return to Timeline of the History of Computers

Sharp Corporation (シャープ株式会社, Shāpu Kabushiki-gaisha) is a Japanese multinational corporation that designs and manufactures electronic products, headquartered in Sakai-ku, SakaiOsaka Prefecture. Since 2016 it has been majority owned by the Taiwan-based Foxconn Group.[4][5][6] Sharp employs more than 50,000 people worldwide. The company was founded in September 1912 in Tokyo and takes its name from one of its founder’s first inventions, the Ever-Sharp mechanical pencil, which was invented by Tokuji Hayakawa in 1915.

Fair Use Sources:

Categories
Hardware and Electronics History

Tandy RadioShack TRS-80 Computer (Model I)

Return to Timeline of the History of Computers or History

Tandy/RadioShack TRS-80 Model I[note 1]

The TRS-80 Micro Computer System (TRS-80, later renamed the Model I to distinguish it from successors) is a desktop microcomputer launched in 1977 and sold by Tandy Corporation through their RadioShack stores. The name is an abbreviation of Tandy/RadioShack, Z80 microprocessor.[3] It is one of the earliest mass-produced and mass-marketed retail home computers.[4]

The TRS-80 has a full-stroke QWERTY keyboard, the Zilog Z80 processor (rather than the more common Intel 8080), 4 KB DRAM standard memory (when many 8-bit computers shipped with only 1 KB RAM), small size and desk footprint, floating-point Level I BASIC language interpreter in ROM, 64-character per line video monitor, and a starting price of US$600[1] (equivalent to US$2500 in 2019).

A cassette tape drive for program storage was included in the original base package, but it proved slow and fiddly in practice. While the software environment was stable and capable, the fiddly program load/save process combined with keyboard bounce issues and a troublesome expansion interface contributed to the Model I’s widespread reputation as something fun to tinker with for computer enthusiasts, but not well suited to serious use. As with many small computers of the era, it lacked full support for the ASCII character set, e.g. no lowercase letters, which also hampered business adoption.

An extensive line of upgrades and add-on hardware peripherals for the TRS-80 was developed and marketed by Tandy/RadioShack. The basic system can be expanded with up to 48 KB of RAM (in 16 KB increments), and up to four floppy disk drives and/or hard disk drives. Tandy/RadioShack provided full-service support including upgrade, repair, and training services in their thousands of stores worldwide.

By 1979, the TRS-80 had the largest selection of software in the microcomputer market.[5] Until 1982, the TRS-80 was the best-selling PC line, outselling the Apple II series by a factor of five according to one analysis.[3]

The TRS-80 Model I pictured alongside the Apple II and the Commodore PET 2001-8. These three computers constitute what Byte Magazine called the “1977 Trinity” of home computing.

In mid-1980, the broadly compatible TRS-80 Model III was released. The Model I was discontinued shortly thereafter, primarily due to stricter FCC regulations on radio-frequency interference to nearby electronic devices.[6][7] In April 1983, the Model III was succeeded by the compatible TRS-80 Model 4.

Following the original Model I and its compatible descendants, the TRS-80 name later became a generic brand used on other technically unrelated computer lines sold by Tandy, including the TRS-80 Model IITRS-80 Model 2000TRS-80 Model 100TRS-80 Color Computer and TRS-80 Pocket Computer.

Fair Use Sources:

Categories
Hardware and Electronics History

Commodore PET Computer – 1977 AD

Return to Timeline of the History of Computers or History

Commodore 2001 Series-IMG 0448b.jpg
A Commodore PET 2001

The Commodore PET is a line of home/personal computers produced starting in 1977 by Commodore International.[3] The system combined a MOS 6502 microprocessorCommodore BASIC in read only memory (ROM), a keyboard, a computer monitor and (in early models) a cassette deck for data and program storage in a single all-in-one case.

Development of the system began in 1976 and a prototype was demonstrated in January 1977 at the Consumer Electronics Show (CES).[1][4] A series of problems meant that production versions did not begin to arrive until December 1977, by which time the TRS-80 and Apple II had already begun deliveries. The close release dates of the three machines led Byte Magazine to refer to them collectively as the “1977 trinity”.

The TRS-80 Model I pictured alongside the Apple II and the Commodore PET 2001-8. These three computers constitute what Byte Magazine called the “1977 Trinity” of home computing.

The original PET design underwent a series of significant updates, adding more memory, a better keyboard, larger screens and other modifications. The systems were a top-seller in the Canadian and United States educational markets, as well as European business uses. The PET formed the basis for Commodore’s entire 8-bit product line, including the Commodore 64.

The name was suggested by Andre Souson after he saw the Pet Rock in Los Gatos, and stated they were going to make the “pet computer”.[5] It was backronymed to Personal Electronic Transactor.

Fair Use Sources:

B07XVF5RSP

Categories
Hardware and Electronics History Networking

Seiko Epson Corporation

Return to Timeline of the History of Computers

Seiko Epson Corporation (セイコーエプソン株式会社, Seikō Epuson Kabushiki-gaisha) (Epson being an abbreviation for “Son of Electronic Printer”),[2] or simply Epson, is a Japanese electronics company and one of the world’s largest manufacturers of computer printers, and information and imaging related equipment. Headquartered in SuwaNagano, Japan,[3] the company has numerous subsidiaries worldwide and manufactures inkjetdot matrix and laser printersscannersdesktop computers, business, multimedia and home theatre projectors, large home theatre televisionsrobots and industrial automation equipment, point of sale docket printers and cash registerslaptopsintegrated circuitsLCD components and other associated electronic components. It is one of three core companies of the Seiko Group, a name traditionally known for manufacturing Seiko timepieces since its founding.

History

The roots of Seiko Epson Corporation go back to a company called Daiwa Kogyo, Ltd. which was founded in May 1942[4] by Hisao Yamazaki, a local clock shop owner and former employee of K. Hattori, in Suwa, Nagano, Japan. Daiwa Kogyo was supported by an investment from the Hattori family (founder of the Seiko Group) and began as a manufacturer of watch parts for Daini Seikosha (currently Seiko Instruments). The company started operation in a 230-square-metre (2,500 sq ft) renovated miso storehouse with 22 employees.

Origins

The roots of Seiko Epson Corporation go back to a company called Daiwa Kogyo, Ltd. which was founded in May 1942[4] by Hisao Yamazaki, a local clock shop owner and former employee of K. Hattori, in Suwa, Nagano, Japan. Daiwa Kogyo was supported by an investment from the Hattori family (founder of the Seiko Group) and began as a manufacturer of watch parts for Daini Seikosha (currently Seiko Instruments). The company started operation in a 230-square-metre (2,500 sq ft) renovated miso storehouse with 22 employees.

In 1943, Daini Seikosha established a factory in Suwa for manufacturing Seiko watches with Daiwa Kogyo. In 1959, the Suwa Factory of Daini Seikosha was split up and merged into Daiwa Kogyo to form Suwa Seikosha Co., Ltd: the forerunner of the Seiko Epson Corporation. The company has developed many timepiece technologies. In particular, it developed the world’s first portable quartz timer (Seiko QC-951) in 1963, the world’s first quartz watch (Seiko Quartz Astron 35SQ) in 1969, the first automatic power generating quartz watch (Seiko Auto-Quartz) in 1988 and the Spring Drive watch movement in 1999.

The watch business is the root of the company’s micromechatronics technologies and still one of the major businesses for Seiko Epson today although it accounts for less than one-tenth of total revenues.[5] The watches made by the company are sold through the Seiko Watch Corporation, a subsidiary of Seiko Holdings Corporation.

Printers

In 1961, Suwa Seikosha established a company called Shinshu Seiki Co. as a subsidiary to supply precision parts for Seiko watches. When the Seiko Group was selected to be the official time keeper for the 1964 Summer Olympics in Tokyo, a printing timer was required to time events, and Shinshu Seiki started developing an electronic printer.[6]

In September 1968, Shinshu Seiki launched the world’s first mini-printer, the EP-101 (“EP” for Electronic Printer,) which was soon incorporated into many calculators. In June 1975, the name Epson was coined for the next generation of printers based on the EP-101 which was released to the public. (EPSON:E-P-SON: SON of Electronic Printer).[7] In April of the same year Epson America Inc. was established to sell printers for Shinshu Seiki Co.The Epson HX-20

In June 1978, the TX-80 (TP-80), eighty-column dot-matrix printer was released to the market, and was mainly used as a system printer for the Commodore PET Computer. After two years of further development, an improved model, the MX-80 (MP-80), was launched in October 1980.[6] It was soon described in the company’s advertising as the best selling printer in the United States.[8]

In July 1982, Shinshu Seiki officially named itself the Epson Corporation and launched the world’s first handheld computer, HX-20 (HC-20), and in May 1983 the world’s first portable color LCD TV was developed and launched by the company.[9]

In November 1985, Suwa Seikosha Co., Ltd. and the Epson Corporation merged to form Seiko Epson Corporation.[10]

The company developed the Micro Piezo inkjet technology, which used a piezoelectric crystal in each nozzle and did not heat the ink at the print head while spraying the ink onto the page, and released Epson MJ-500 inkjet cartridge (Epson Stylus 800 printer) in March 1993. Shortly after in 1994, Epson released the first high resolution color inkjet printer (720×720 dpi was considered as a high resolution), the Epson Stylus Color (P860A) utilizing the Micro Piezo head technology. Newer models of the Stylus series employed Epson’s special DURABrite ink. They also had two hard drives. The HD 850 and the HD 860 MFM interface. The specifications are reference The WINN L. ROSCH Hardware bible 3rd addition SAMS publishing.[11]

In 1994 Epson started outsourcing sales reps to help sell their products in retail stores in the United States. The same year, they started the Epson Weekend Warrior sales program. The purpose of the program was to help improve sales, improve retail sales reps’ knowledge of Epson products and to address Epson customer service in a retail environment. Reps were assigned on weekend shift, typically around 12–20 hours a week. Epson started the Weekend Warrior program with TMG Marketing (now Mosaic Sales Solutions), later with Keystone Marketing Inc, then to Mosaic, and now with Campaigners INC. The Mosaic contract expired with Epson on June 24, 2007 and Epson is now represented by Campaigners, Inc. The sales reps of Campaigners, Inc. are not outsourced as Epson hired “rack jobbers” to ensure their retail customers displayed products properly. This frees up their regular sales force to concentrate on profitable sales solutions to VAR’s and system integrators, leaving “retail” to reps who did not require sales skills.

Personal computers[edit]

Starting in 1983, Epson entered the personal computer market with the QX-10, a CP/M-compatible Z80 machine. By 1986, the company had shifted to the growing PC compatible market with the Equity line. Epson withdrew from the PC market in 1996.

21st century[edit]

In June 2003, the company became public following their listing on the 1st section of the Tokyo Stock Exchange. As of 2009, the Hattori family and its related individuals and companies are still major shareholders of Seiko Epson and have the power.[12] Even though Seiko Holdings and Seiko Epson have some common shareholders including the key members of the Hattori family, they are not affiliated. They are managed and operated completely independently. Epson has established its own brand image but rarely uses Seiko.

In 2004, Epson introduced their R-D1 digital RangeFinder Camera, which supports Leica M mount and Leica screw mount lenses with an adapter ring. This camera is the first digital rangefinder on the market. Because its sensor is smaller than that of the standard 35 mm film frame, lenses mounted on the R-D1 have the field view 1.53 times as long as that of the standard 35 mm camera. As of 2006 the R-D1 has been replaced by the R-D1s. The R-D1s is less expensive but its hardware is identical. Epson has released a firmware patch to bring the R-D1 up to the full functionality of its successor—the first digital camera manufacturer to make such an upgrade available for free.[citation needed]

In 2009, the company became full owner of Orient Watch, one of the largest timepiece manufacturers in Japan.[13]

In September 2012, Epson introduced a printer called the Epson Expression Premium XP-800 Small-in-One. It has the ability to print wirelessly.[14] Furthermore, the name Expression has followed various models of scanners.

In September 2015 Epson debuted a printer, the Epson ET-4550 which instead of print cartridges, enables the user to pour the ink into separate inkwells from ink bottles.[15] In the third quarter of 2012, Epson’s global market share in the sale of printers, copiers and multifunction devices amounted to 15.20 percent.[16]

Epson is also involved in the smart glasses market. Since 2016 the company has three different models. First up was the Epson Moverio BT-100 which was followed up by the Epson Moverio BT-200. In 2016 the company also released the Moverio Pro BT-2000 which is an enterprise oriented, upgraded version of the BT-200 with stereoscopic cameras. The company also was the first to release consumer smart glasses with see through optics that made them very popular under drone pilots for being able to get a first person view while still being able to see the drone in the sky.

Fair Use Sources: