Categories
Artificial Intelligence Cloud Data Science - Big Data Hardware and Electronics History Software Engineering

Computing Philosophy: Logic, Order, Rules, and Clarity

“We think we are creating the system for our own purposes. We believe we are making it in our own image . . . But the computer is not really like us. It is a projection of a very slim part of ourselves: that portion devoted to logic, order, rule, and clarity.”

— Ellen Ullman, Close to the Machine: Technophilia and its Discontents

Sources:

Fair Use Sources:

Categories
Artificial Intelligence Cloud Data Science - Big Data Hardware and Electronics History Networking Operating Systems Software Engineering

Timeline of the History of Computers

Return to History or This Year in History

c. 2500 BC – Sumerian Abacus

c. 700 BC – Scytale

c. 150 BC – Antikythera Mechanism

c. 60 – Programmable Robot

c. 850 – On Deciphering Cryptographic Messages

c. 1470 – Cipher Disk

1613 – First Recorded Use of the Word Computer

1621 – Slide Rule

1703 – Binary Arithmetic

1758 – Human Computers Predict Halley’s Comet

1770 – The “Mechanical Turk”

1792 – Optical Telegraph

1801 – The Jacquard Loom

1822 – The Difference Engine

1833 – Michael Faraday discovered silver sulfide became a better conductor when heated

1836 – Electrical Telegraph

1843 – Ada Lovelace Writes a Computer Program

1843 – Fax Machine Patented

1843 – Edgar Allan Poe’s “The Gold-Bug”

1849 to early 1900s – Silicon Valley After the Gold Rush

1851 – Thomas Arithmometer

1854 – Boolean Algebra

1864 – First Electromagnetic Spam Message

1870 – Mitsubishi founded

1874 – Baudot Code

1874 – Semiconductor Diode conceived of

1876 – Ericsson Corporation founded in Sweden

1885 – Stanford University

1885 – William Burroughs’ adding machine

1890 – Herman Hollerith Tabulating the US Census

1890 – Toshiba founded in Japan

1891 – Strowger Step-by-Step Switch

1898 – Nippon Electric Limited Partnership – NEC Corporation founded in Japan

1890s to 1930s – Radio Engineering

Early 1900s – Electrical Engineering

1904 – “Diode” or Two-Element Amplifier actually invented

1904 – Three-Element Amplifier or “Triode”

1906 – Vacuum Tube or “Audion”

1907 – Lee DeForest coins the term “radio” to refer to wireless transmission when he formed his DeForest Radio Telephone Company

1909 – Charles Herrold in San Jose started first radio station in USA with regularly scheduled programming, including songs, using an arc transmitter of his own design. Herrold was one of Stanford’s earliest students and founded his own College of Wireless and Engineering in San Jose

1910 – Radio Broadcasting business pioneered by Lee DeForest with broadcast from New York of a live performance by Italian tenor Enrico Caruso

1910 – Hitachi founded in Japan

1912 – Sharp Corporation founded in Japan and takes its name from one of its founder’s first inventions, the Ever-Sharp mechanical pencil

1914 – Floating-Point Numbers

1917 – Vernam Cipher

1918 – Panasonic, then Matsushita Electric, founded in Japan

1920 – Rossum’s Universal Robots

1927 – Fritz Lang’s Metropolis

1927 – First LED

1928 – Electronic Speech Synthesis

1930 – The Enigma Machine

1931 – Differential Analyzer

1935 – Fujitsu founded as Fuji Telecommunications Equipment Manufacturing in Japan. Fujitsu is the second oldest IT company after IBM and before Hewlett-Packard

1936 – Church-Turing Thesis

1939 – Hewlett-Packard founded in a one-car garage in Palo Alto, California by Bill Hewlett and David Packard

1939 – Toshiba founded in Japan

1941Z3 Computer

1942Atanasoff-Berry Computer

1942 – Isaac Asimov’s Three Laws of Robotics

1942Seiko Corporation founded in Japan

1943ENIAC

1943Colossus

1944Delay Line Memory

1944Binary-Coded Decimal

1945Vannevar Bush‘s “As We May Think

1945EDVAC First Draft Report – The von Neumann architecture

1946 – Trackball

1946 – Williams Tube Random Access Memory

1947 – Actual Bug Found – First “debugging”

1947 – William Shockley’s Silicon Transistor

1948 – The Bit – Binary Digit 0 or 1

1948 – Curta Calculator

1948 – Manchester SSEM

1949 – Whirlwind Computer

1950 – Error-Correcting Codes (ECC)

1951 – Turing Test of Artificial Intelligence (AI)

1951 – Magnetic Tape Used for Computers

1951 – Core Memory

1951 – Microprogramming

1952 – Computer Speech Recognition

1953 – First Transistorized Computer

1955 – Artificial Intelligence (AI) Coined

1955 – Computer Proves Mathematical Theorem

1956 – First Disk Storage Unit

1956 – The Byte

1956 – Robby the Robot from Forbidden Planet

1957 – FORTRAN Programming Language

1957 – First Digital Image

1958 – The Bell 101 Modem

1958 – SAGE Computer Operational

1959 – IBM 1401 Computer

1959 – DEC PDP-1

1959 – Quicksort Algorithm

1959 – SABRE Airline Reservation System

1960 – COBOL Programming Language

1960 – Recommended Standard 232 (RS-232)

1961 – ANITA Electronic Calculator

1961 – Unimate – First Mass-Produced Robot

1961 – Time-Sharing – The Original “Cloud Computing

1961 – Shinshu Seiki Company founded in Japan (now called Seiko Epson Corporation) as a subsidiary of Seiko to supply precision parts for Seiko watches.

1962 – Spacewar! Video Game

1962 – Virtual Memory

1962 – Digital Long Distance Telephone Calls

1963 – Sketchpad Interactive Computer Graphics

1963 – ASCII Character Encoding

1963 – Seiko Corporation in Japan developed world’s first portable quartz timer (Seiko QC-951)

1964 – RAND Tablet Computer

1964 – Teletype Model 33 ASR

1964 – IBM System/360 Mainframe Computer

1964 – BASIC Programming Language

1965 – First Liquid-Crystal Display (LCD)

1965 – Fiber Optics – Optical-Fiber

1965 – DENDRAL Artificial Intelligence (AI) Research Project

1965 – ELIZA – The First “Chatbot” – 1965

1965 – Touchscreen

1966 – Star Trek Premieres

1966 – Dynamic RAM

1966 – Linear predictive coding (LPC) proposed by Fumitada Itakura of Nagoya University and Shuzo Saito of Nippon Telegraph and Telephone (NTT).[71]

1967 – Object-Oriented Programming

1967 – First ATM Machine

1967 – Head-Mounted Display

1967 – Programming for Children

1967 – The Mouse

1968 – Carterfone Decision

1968 – Software Engineering

1968 – HAL 9000 Computer from 2001: A Space Odyssey

1968 – First “Spacecraft” “Guided by Computer”

1968 – Cyberspace Coined—and Re-Coined

1968 – Mother of All Demos

1968 – Dot Matrix Printer – Shinshu Seiki (now called Seiko Epson Corporation) launched the world’s first mini-printer, the EP-101 (“EP” for Electronic Printer,) which was soon incorporated into many calculators

1968 – Interface Message Processor (IMP)

1969 – ARPANET / Internet

1969 – Digital Imaging

1969 – Network Working Group Request for Comments (RFC): 1

1969 – Utility Computing – Early “Cloud Computing

1969 – Perceptrons Book – Dark Ages of Neural Networks Artificial Intelligence (AI)

1969 – UNIX Operating System

1969 – Seiko Epson Corporation in Japan developed world’s first quartz watch timepiece (Seiko Quartz Astron 35SQ)

1970 – Fair Credit Reporting Act

1970 – Relational Databases

1970 – Floppy Disk

1971 – Laser Printer

1971 – NP-Completeness

1971 – @Mail Electronic Mail

1971 – First Microprocessor – General-Purpose CPU – “Computer on a Chip”

1971 – First Wireless Network

1972 – C Programming Language

1972 – Cray Research Supercomputers – High-Performance Computing (HPC)

1972 – Game of Life – Early Artificial Intelligence (AI) Research

1972 – HP-35 Calculator

1972 – Pong Game from Atari – Nolan Bushnell

1973 – First Cell Phone Call

1973 – Danny Cohen first demonstrated a form of packet voice as part of a flight simulator application, which operated across the early ARPANET.[69][70]

1973 – Xerox Alto from Xerox Palo Alto Research Center (PARC)

1973 – Sharp Corporation produced the first LCD calculator

1974 – Data Encryption Standard (DES)

1974 – The Institute of Electrical and Electronics Engineers (IEEE) publishes a paper entitled “A Protocol for Packet Network Interconnection”.[82]

1974 – Network Voice Protocol (NVP) tested over ARPANET in August 1974, carrying barely audible 16 kpbs CVSD encoded voice.[71]

1974 – The first successful real-time conversation over ARPANET achieved using 2.4 kpbs LPC, between Culler-Harrison Incorporated in Goleta, California, and MIT Lincoln Laboratory in Lexington, Massachusetts.[71]

1974 – First Personal Computer: The Altair 8800 Invented by MITS in Albuquerque, New Mexico

1975 – Colossal Cave Adventure – Text-based “Video” Game

1975 – The Shockwave Rider SciFi Book – A Prelude of the 21st Century Big Tech Police State

1975 – AI Medical Diagnosis – Artificial Intelligence in Medicine

1975 – BYTE Magazine

1975 – Homebrew Computer Club

1975 – The Mythical Man-Month

1975 – The name Epson was coined for the next generation of printers based on the EP-101 which was released to the public. (EPSON:E-P-SON: SON of Electronic Printer).[7] Epson America Inc. was established to sell printers for Shinshu Seiki Co.

1976 – Public Key Cryptography

1976 – Acer founded

1976 – Tandem NonStop

1976 – Dr. Dobb’s Journal

1977 – RSA Encryption

1977 – Apple II Computer

The TRS-80 Model I pictured alongside the Apple II and the Commodore PET 2001-8. These three computers constitute what Byte Magazine called the “1977 Trinity” of home computing.

1977 – Danny Cohen and Jon Postel of the USC Information Sciences Institute, and Vint Cerf of the Defense Advanced Research Projects Agency (DARPA), agree to separate IP from TCP, and create UDP for carrying real-time traffic.

1978 – First Internet Spam Message

1978 – France’s Minitel Videotext

1979 – Secret Sharing for Encryption

1979 – Dan Bricklin Invents VisiCalc Spreadsheet

1980 – Timex Sinclair ZX80 Computer

1980 – Flash Memory

1980 – RISC Microprocessors – Reduced Instruction Set Computer CPUs

1980 – Commercially Available Ethernet Invented by Robert Metcalfe of 3Com

1980 – Usenet

1981 – IBM Personal Computer – IBM PC

1981 – Simple Mail Transfer Protocol (SMTP) Email

1981 – Japan’s Fifth Generation Computer SystemsJapan

1982 – Sun Microsystems was founded on February 24, 1982.[2]

1982 – AutoCAD

1982 – First Commercial UNIX Workstation

1982 – PostScript

1982 – Microsoft and the IBM PC Clones

1982 – First CGI Sequence in Feature Film – Star Trek II: The Wrath of Khan

1982 – National Geographic Moves the Pyramids – Precursor to Photoshop

1982 – Secure Multi-Party Computation

1982 – TRON Movie

1982 – Home Computer Named Machine of the Year by Time Magazine

1983 – The Qubit – Quantum Computers

1983 – WarGames

1983 – 3-D Printing

1983 – Computerization of the Local Telephone Network

1983 – First Laptop

1983 – MIDI Computer Music Interface

1983 – Microsoft Word

1983 – Nintendo Entertainment System – Video Games

1983 – Domain Name System (DNS)

1983 – IPv4 Flag Day – TCP/IP

1984 – Text-to-Speech (TTS)

1984 – Apple Macintosh

1984 – VPL Research, Inc. – Virtual Reality (VR)

1984 – Quantum Cryptography

1984 – Telebit TrailBlazer Modems Break 9600 bps

1984 – Verilog Language

1984 – Dell founded by Michael Dell

1984 – Cisco Systems was founded in December 1984

1985 – Connection Machine – Parallelization

1985 – First Computer-Generated TV Host – Max HeadroomCGI

1985 – Zero-Knowledge Mathematical Proofs

1985 – FCC Approves Unlicensed Wireless Spread Spectrum

1985 – NSFNET National Science Foundation “Internet”

1985 – Desktop Publishing – with Macintosh, Aldus PageMaker, LaserJet, LaserWriter and PostScript

1985 – Field-Programmable Gate Array (FPGA)

1985 – GNU Manifesto from Richard Stallman

1985 – AFIS Stops a Serial Killer – Automated Fingerprint Identification System

1986 – Software Bug Fatalities

1986 – Pixar Animation Studios

1986 – D-Link Corporation founded in Taipei, Taiwan

1987 – Digital Video Editing

1987 – GIF – Graphics Interchange Format

1988 – MPEG – Moving Picture Experts Group – Coding-Compressing Audio-Video

1988 – CD-ROM

1988 – Morris Worm Internet Computer Virus

1988 – Linksys founded

1989 – World Wide Web-HTML-HTTP Invented by Tim Berners-Lee

1989 – Asus was founded in Taipei, Taiwan

1989 – SimCity Video Game

1989 – ISP Provides Internet Access to the Public

1990 – GPS Is Operational – Global Positioning System

1990 – Digital Money is Invented – DigiCash – Precursor to Bitcoin

1991 – Pretty Good Privacy (PGP)

1991 – DARPA’s Report “Computers at Risk: Safe Computing in the Information Age

1991 – Linux Kernel Operating System Invented by Linus Torvalds

1992 – Boston Dynamics Robotics Company Founded

1992 – JPEG – Joint Photographic Experts Group

1992 – First Mass-Market Web Browser NCSA Mosaic Invented by Marc Andreessen

1992 – Unicode Character Encoding

1993 – Apple Newton

1994 – First Banner Ad – Wired Magazine

1994 – RSA-129 Encryption Cracked

1995 – DVD

1995 – E-Commerce Startups – eBay, Amazon and DoubleClick Launched

1995 – AltaVista Web Search Engine

1995 – Gartner Hype Cycle

1996 – Universal Serial Bus (USB)

1996 – Juniper Networks founded

1997 – IBM Computer Is World Chess Champion

1997 – PalmPilot

1997 – E Ink

1998 – Diamond Rio MP3 Player

1998 – Google

1999 – Collaborative Software Development

1999 – Blog Is Coined

1999 – Napster P2P Music and File Sharing

2000 – USB Flash Drive

2000 – Sharp Corporation’s Mobile Communications Division created the world’s first commercial camera phone, the J-SH04, in Japan

2000 – Fortinet founded

2001 – Wikipedia

2001 – Apple iTunes

2001 – Advanced Encryption Standard (AES)

2001 – Quantum Computer Factors “15”

2002 – Home-Cleaning Robot

2003 – CAPTCHA

2004 – Product Tracking

2004 – Facebook

2004 – First International Meeting on Synthetic Biology

2005 – Video Game Enables Research into Real-World Pandemics

2006 – Apache Hadoop Makes Big Data Possible

2006 – Differential Privacy

2007 – Apple iPhone

2008 – Bitcoin

2010 – Air Force Builds Supercomputer with Gaming Consoles

2010 – Cyber Weapons

2011 – Smart Homes via the Internet of Things (IoT)

2011 – IBM Watson Wins Jeopardy!

2011 – World IPv6 Day

2011 – Social Media Enables the Arab Spring

2012 – DNA Data Storage

2013 – Algorithm Influences Prison Sentence

2013 – Subscription Software “Popularized”

2014 – Data Breaches

2014 – Over-the-Air Vehicle Software Updates

2015 – Google Releases TensorFlow

2016 – Augmented Reality Goes Mainstream

2016 – Computer Beats Master at Game of Go

~2050 -Hahahaha! – Artificial General Intelligence (AGI)

~9999 – The Limits of Computation?

Sources:

Fair Use Sources:

Categories
Artificial Intelligence AWS Azure Bibliography Cloud Data Science - Big Data DevOps Hardware and Electronics History Networking Operating Systems Software Engineering

TTG – TechTarget Glossaries from WhatIs.com

Fair Use Source: https://whatis.techtarget.com/glossaries

See 809137 TTG-DvOp and 629581 TTG-CC

(TTG) – TechTarget Glossaries from WhatIs.com

Categories
Artificial Intelligence Bibliography Cloud Data Science - Big Data DevOps Hardware and Electronics History Networking Software Engineering

Oxford Dictionary of Computer Science

Fair Use Source: B019GXM8X8 (ODCS)

A Dictionary of Computer Science (Oxford Quick Reference) 7th Edition, by Editors Andrew Butterfield, Gerard Ngondi, Anne Kerr

Previously named A Dictionary of Computing, this bestselling dictionary has been renamed A Dictionary of Computer Science, and fully revised by a team of computer specialists, making it the most up-to-date and authoritative guide to computing available. Containing over 6,500 entries and with expanded coverage of multimedia, computer applications, networking, and personal computer science, it is a comprehensive reference work encompassing all aspects of the subject and is as valuable for home and office users as it is indispensable for students of computer science.

Terms are defined in a jargon-free and concise manner with helpful examples where relevant. The dictionary contains approximately 150 new entries including cloud computing, cross-site scripting, iPad, semantic attack, smartphone, and virtual learning environment. Recommended web links for many entries, accessible via the Dictionary of Computer Science companion website, provide valuable further information and the appendices include useful resources such as generic domain names, file extensions, and the Greek alphabet.

This dictionary is suitable for anyone who uses computers, and is ideal for students of computer science and the related fields of IT, maths, physics, media communications, electronic engineering, and natural sciences.

Book Details

  • ASIN : B019GXM8X8
  • Publisher : OUP Oxford; 7th edition (January 28, 2016)
  • Publication date : January 28, 2016
  • Print length : 641 pages
  • First edition 1983, Second edition 1986, Third edition 1990, Fourth edition 1996, Fifth edition 2004, Sixth edition 2008, Seventh edition 2016
  • ISBN 978–0–19–968897–5, ebook ISBN 978–0–19–100288–5

Preface

“The first edition of this dictionary was published in 1983 as a specialist reference work for computer professionals and for people interested in the underlying concepts and theories of computer science. Over successive editions, the work has been expanded and changed to reflect the technological and social changes that have occurred, especially the enormous growth in home computing and the Internet. In particular, the fourth edition (1996) included an additional 1700 entries catering for a wider readership. At the same time, the editors have retained the basic principles of the original book.”

“In the seventh edition of the dictionary we have followed the same line. The existing entries have been updated and over 120 new entries have been added. In particular, coverage of areas such as database management and social networking has been increased to reflect the growing importance of these areas. Some obsolete terms have been deleted, although some have been kept for their historical interest. Links to useful websites have been updated and more added. There are also six special feature spreads, giving information on selected topics.”

JL, ASK, 2015

Guide to the Dictionary

“Synonyms and generally used abbreviations are given either in brackets immediately after the relevant entry title, or occasionally in the text of the entry with some additional information or qualification.”

“A distinction is made between an acronym and an abbreviation: an acronym can be pronounced while an abbreviation cannot. The entry for an acronym usually appears at the acronym itself, whereas the entry for an abbreviation may appear either at the unabbreviated form or at the abbreviation—depending on which form is most commonly used. When a term is defined under an abbreviation, the entry for the unabbreviated form simply cross-refers the reader to the abbreviation.”

“Some terms listed in the dictionary are used both as nouns and verbs. This is usually indicated in the text of an entry if both forms are in common use. In many cases a noun is also used in an adjectival form to qualify another noun. This occurs too often to be noted.”

Fair Use Source: B019GXM8X8 (ODCS)

Categories
Artificial Intelligence Bibliography Cloud Data Science - Big Data Hardware and Electronics History Linux Networking Operating Systems Software Engineering

Bibliography of the History of Technology, Computing, IT, Internet and Programming

Return to Timeline of the History of Computers or History

Books

Alexander, Charles C. Holding the Line: The Eisenhower Era, 1952–1961. Bloomington: Indiana University Press, 1975.

Baran, Paul.“Packet Switching.” In Fundamentals of Digital Switching. 2d ed. Edited by John C. McDonald. New York: Plenum Press, 1990.

Barry, John A. Technobabble. Cambridge: MIT Press, 1991.

Bell, C. Gordon, Alan Kotok, Thomas N. Hastings, and Richard Hill. “The Evolution of the DEC System-10.” In Computer Engineering: A DEC View of Hardware Systems Design. Edited by C. Gordon Bell, J. Craig Mudge, and John E. McNamara. Bedford, Mass.: Digital Equipment Corporation, 1978.

Bell, C. Gordon, Gerald Butler, Robert Gray, John E. McNamara, Donald Vonada, and Ronald Wilson. “The PDP-1 and Other 18-Bit Computers.” In Computer Engineering: A DEC View of Hardware Systems Design. Edited by C. Gordon Bell, J. Craig Mudge, and John E. McNamara. Bedford, Mass.: Digital Equipment Corporation, 1978.

Bergaust, Erik. Wernher von Braun. Washington, D.C.: National Space Institute, 1976.

Blanc, Robert P., and Ira W. Cotton, eds. Computer Networking. New York: IEEE Press, 1976.

Brendon, Piers. Ike: His Life and Times. New York: Harper & Row, 1986.

Brooks, John. Telephone: The First HundredYears. New York: Harper & Row, 1976.

Brucker, Roger W., and Richard A. Watson. The Longest Cave. New York: Alfred A. Knopf, 1976.

Clarke, Arthur C., et al. The Telephone’s First Century—And Beyond: Essays on the Occasion of the 100th Anniversary of Telephone Communication. New York: Thomas Y. Crowell Company, 1977

Computer Science, Numerical Analysis and Computing. National Physical Laboratory, Engineering Sciences Group, Research 1971. London: Her Majesty’s Stationery Office, 1972.

Froehlich, Fritz E., Allen Kent, and Carolyn M. Hall, eds. “ARPANET, the Defense Data Network, and Internet.” In The Froehlich/Kent Encyclopedia of Telecommunications. New York: Marcel Dekker, Inc., 1991.

Goldstein, Jack S. A Different Sort of Time: The Life of Jerrold R. Zacharias. Cambridge MIT Press, 1992.

Halberstam, David. The Fifties. New York:Villard Books, 1993.

Hall, Mark, and John Barry. Sunburst: The Ascent of Sun Microsystems. Chicago: Contemporary Books, 1990.

Hammond, William M. Public Affairs: The Military and the Media, 1962–1968. Washington, D.C.: Center of Military History, U.S. Army, Superintendent of Documents, U.S. Government Printing Office, 1968.

Hamner, W. Clay. “The United States Postal Service: Will It Be Ready for the Year 2000?” In The Future of the Postal Service. Edited by Joel L. Fleishman. New York: Praeger, 1983.

Holzmann, Gerard J., and Björn Pehrson. The Early History of Data Network. Los Alamitos, Calif.: IEEE Computer Society Press, 1995.

Kidder, Tracy. The Soul of a New Machine. Boston: Little, Brown, 1981.

Killian, James R., Jr. Sputnik, Scientists, and Eisenhower: A Memoir of the First Special Assistant to the President for Science and Technology. Cambridge: MIT Press, 1977.

———. The Education of a College President: A Memoir. Cambridge: MIT Press, 1985.

Kleinrock, Leonard. Communication Nets: Stochastic Message Flow and Delay. New York: McGraw-Hill, 1964.

———. Queueing Systems. 2 vols. New York: John Wiley & Sons, 1974–1976.

Langdon-Davies, John. NPL: Jubilee Book of the National Physical Laboratory. London: His Majesty’s Stationery Office, 1951.

Lebow, Irwin. Information Highways & Byways: From the Telegraph to the 21st Century. New York: IEEE Press, 1995.

Licklider, J. C. R. “Computers and Government.” In The Computer Age: A Twenty-Year View, edited by Michael L. Dertouzos and Joel Moses. MIT Bicentennial Series. Cambridge: MIT Press, 1979.

———. Libraries of the Future. Cambridge: MIT Press, 1965.

Padlipsky, M. A. The Elements of Networking Style and Other Essays & Animadversions of the Art of Intercomputer Networking. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1985.

Proceedings of the Fifth Data Communications Symposium. IEEE Computer Society, Snowbird, Utah, September 27–29, 1977.

Pyatt, Edward. The National Physical Laboratory: A History. Bristol, England: Adam Hilger Ltd., 1983.

Redmond, Kent C., and Thomas M. Smith. The Whirlwind Project: The History of a Pioneer Computer. Bedford, Mass.: Digital Press, 1980.

Rheingold, Howard. The Virtual Community. New York: Harper Perennial, 1994.

———. Tools for Thought: The People and Ideas Behind the Next Computer Revolution. New York: Simon & Schuster, 1988.

Roberts, Lawrence G. “The ARPANET and Computer Networks.” In A History of Personal Workstations, edited by Adele Goldberg. Reading, Mass.: ACM Press (Addison-Wesley), 1988.

Rose, Marshall T. The Internet Message: Closing the Book with Electronic Mail. Englewood Cliffs, N.J.: PTR Prentice Hall, 1993.

Sherman, Kenneth. Data Communications: A User’s Guide. Reston,Virginia: Reston Publishing Company, 1981.

Smith, Douglas K., and Robert C. Alexander. Fumbling the Future: How Xerox Invented, then Ignored, the First Personal Computer. New York: William Morrow, 1988.

Udall, Stewart L. The Myths of August: A Personal Exploration of Our Tragic Cold War Affair with the Atom. New York: Pantheon, 1994.

Wildes, Karl L., and Nilo A. Lindgren. A Century of Electrical Engineering and Computer Science at MIT, 1882–1982. Cambridge, Mass.: MIT Press, 1985.

Winner, Langdon. The Whale and the Reactor: A Search for Limits in an Age of High Technology. Chicago: University of Chicago Press, 1986.Edit

Journal, Magazine, and Newspaper Articles

Abramson, Norman. “Development of the Alohanet.” IEEE Transactions on Information Theory, January 1985.

Anderson, Christopher. “The Accidental Superhighway.” The Economist, 1 July 1995.

Baran, Paul. “On Distributed Communications Networks.” IEEE Transactions on Communications Systems, 1 March 1964.

———.“Reliable Digital Communications Systems Using Unreliable Network Repeater Nodes.” RAND Corporation Mathematics Division Report No. P-1995, 27 May 1960.

Boggs, David R., John F. Shoch, Edward A. Taft, and Robert M. Metcalfe. “PUP: An Internetwork Architecture.” IEEE Transactions on Communications, April 1980.

“Bolt Beranek Accused by Government of Contract Overcharges.” Dow Jones News Service–Wall Street Journal combined stories, 27 October 1980.

“Bolt Beranek and Newman: Two Aides Plead Guilty to U.S. Charge.” Dow Jones News Service–Wall Street Journal combined stories, 12 November 1980.

“Bolt Beranek, Aides Accused of Cheating U.S. on Several Jobs.” The Wall Street Journal, 28 October 1980.

Bulkeley, William M. “Can He Turn Big Ideas into Big Sales?” The Wall Street Journal, 12 September 1994.

Bush,Vannevar. “As We May Think.” Atlantic Monthly, July 1945.

Campbell-Kelly, Martin. “Data Communications at the National Physical Laboratory: 1965–1975.” Annals of the History of Computing 9, no. 3/4, 1988.

Cerf,Vinton G., and Peter T. Kirstein. “Issues in Packet-Network Interconnection.” Proceedings of the IEEE, November 1979.

Cerf, Vinton G., and Robert E. Kahn. “A Protocol for Packet-Network Intercommunication.” IEEE Transactions on Communications, May 1974.

Cerf, Vinton. “PARRY Encounters the Doctor: Conversation Between a Simulated Paranoid and a Simulated Psychiatrist.” Datamation, July 1973.

Clark, David D. “The Design Philosophy of the DARPA Internet Protocols.” Proceedings of the Association for Computing Machinery Sigcomm Symposium on Data Communications, August 1988.

Clark, David D., Kenneth T. Pogran, and David P. Reed. “An Introduction to Local Area Networks.” Proceedings of the IEEE, November 1979.

Comer, Douglas. “The Computer Science Research Network CSNET: A History and Status Report.” Communications of the ACM, October 1983.

Crowther, W. R., F. E. Heart, A. A. McKenzie, J. M. McQuillan, and D. C. Walden.“Issues in Packet Switching Networking Design.” Proceedings of the 1975 National Computer Conference, 1975.

Denning, Peter J. “The Science of Computing: The ARPANET After Twenty Years.” American Scientist, November-December 1989.

Denning, Peter J., Anthony Hearn, and C. William Kern. “History and Overview of CSNET. “Proceedings of the Association for Computing Machinery Sigcomm Symposium on Data Communications, March 1983.

“Dr. J. C. R. Licklider Receives Biennial Award at State College Meeting.” The Journal of the Acoustical Society of America, November 1950.

Engelbart, Douglas C. “Coordinated Information Services for a Discipline-or Mission-Oriented Community.” Proceedings of the Second Annual Computer Communications Conference, January 1972.

———. “Intellectual Implications of Multi-Access Computer Networks.” Proceedings of the Interdisciplinary Conference on Multi-Access Computer Networks, Austin, Texas, April 1970.

Ericson, Raymond. “Philharmonic Hall Acoustics Start Rumors Flying.” The NewYork Times, 4 December 1962.

Finucane, Martin. “Creators of the Internet Forerunner Gather in Boston.” Reading (Mass.) Daily Times Herald, 12 September 1994.

Fisher, Sharon. “The Largest Computer Network: Internet Links UNIX Computers Worldwide.” InfoWorld, 25 April 1988.

Hines, William. “Mail.” Chicago Sun-Times, 29 March 1978.

Haughney, Joseph F. “Anatomy of a Packet-Switching Overhaul.” Data Communications, June 1982.

Holusha, John. “Computer Tied Carter, Mondale Campaigns: The Bethesda Connection.” Washington Star, 21 November 1976.

Jacobs, Irwin M., Richard Binder, and EstilV. Hoversten. “General Purpose Packet Satellite Networks.” Proceedings of the IEEE, November 1978.

Jennings, Dennis M., Lawrence H. Landweber, Ira H. Fuchs, David J. Farber, and W. Richards Adrion. “Computer Networking for Scientists.” Science, 22 February 1986.

Kahn, Robert E. “The Role of Government in the Evolution of the Internet.” Communications of the ACM, August 1994.

Kahn, Robert E., Steven A. Gronemeyer, Jerry Burchfiel, and Ronald C. Kunzelman. “Advances in Packet Radio Technology.” Proceedings of the IEEE, November 1978.

Kantrowitz, Barbara, and Adam Rogers. “The Birth of the Internet.” Newsweek, 8 August 1994.

Kleinrock, Leonard. “Principles and Lessons in Packet Communications.” Proceedings of the IEEE, November 1978.

Landweber, Lawrence H., Dennis M. Jennings, and Ira Fuchs. “Research Computer Networks and Their Interconnection.” IEEE Communications Magazine, June 1986.

Lee, J. A. N., and Robert F. Rosin.“The CTSS Interviews.” IEEE Annals of the History of Computing 14, no. 1, 1992.

———.“The Project MAC Interviews.” IEEE Annals of the History of Computing 14, no. 2, 1992.

Licklider, J. C. R. “A Gridless, Wireless Rat-Shocker.” Journal of Comparative and Physiological Psychology 44, 1951.

———. “Man-Computer Symbiosis.” Reprint. In Memoriam: J. C. R. Licklider. Digital Equipment Corporation Systems Research Center, 7 August 1990.

Licklider, J. C. R., and Albert Vezza. “Applications of Information Networks.” Proceedings of the IEEE, November 1978.

Licklider, J. C. R., and Robert W. Taylor. “The Computer as a Communication Device.” Reprint. In Memoriam: J. C. R. Licklider. Digital Equipment Corporation Systems Research Center, 7 August 1990.

Markoff, John. “Up from the Computer Underground.” The NewYork Times, 27 August 1993.

McKenzie, Alexander A., and B. P. Cosell, J. M. McQuillan, M. J. Thrope. “The Network Control Center for the ARPA Network.” Proceedings of the IEEE, 1972.

Mier, Edwin E. “Defense Department Readying Network Ramparts.” Data Communications, October 1983.

Mills, Jeffrey. “Electronic Mail.” Associated Press, 4 January 1976.

———.“Electronic Mail.” Associated Press, 19 June 1976.

———. “Postal Service Tests Electronic Message Service.” Associated Press, 28 March 1978.

Mills, Kay.“The Public Concern: Mail.” Newhouse News Service, 27 July 1976.

Mohl, Bruce A. “2 Bolt, Beranek Officials Collapse in Federal Court.” The Boston Globe, 31 October 1980.

Pallesen, Gayle. “Consultant Firm on PBIA Faces Criminal Charges.” Palm Beach (Florida) Post, 8 November 1980.

Pearse, Ben. “Defense Chief in the Sputnik Age.” The NewYork Times Magazine, 10 November 1957.

Pool, Bob. “Inventing the Future: UCLA Scientist Who Helped Create Internet Isn’t Done Yet.” Los Angeles Times, 11 August 1994.

Quarterman, John S., and Josiah C. Hoskins. “Notable Computer Networks.” Communications of the ACM, October 1986.

Roberts, Lawrence G. “ARPA Network Implications.” Educom, Bulletin of the Interuniversity Communications Council, fall 1971.

Salus, Peter. “Pioneers of the Internet.” Internet World, September 1994.

“Scanning the Issues,” IEEE Spectrum, August 1964.

Schonberg, Harold C. “4 Acoustics Experts to Urge Revisions in Auditorium.” The NewYork Times, 4 April 1963.

———.“Acoustics Again: Philharmonic Hall Has Some Defects, But Also Has a Poetry of Its Own.” The NewYork Times, 9 December 1962.

Selling It. Consumer Reports, June 1977.

Space Agencies. “ARPA Shapes Military Space Research.” Aviation Week, 16 June 1958.

Sterling, Bruce. “Internet.” Fantasy and Science Fiction, February 1993.

Swartzlander, Earl. “Time-Sharing at MIT.” IEEE Annals of the History of Computing 14, no. 1, 1992.

“Transforming BB&N: ARPANET’s Architect Targets Non-Military Networks.” Data Communications, April 1984.

Wilson, David McKay. “BBN Executives Collapse in Court.” Cambridge (Mass.) Chronicle, 6 November 1980.

———. “Consulting Co. Admits Overcharge.” Cambridge (Mass.) Chronicle, 30 October 1980.

Zitner, Aaron. “A Quiet Leap Forward in Cyberspace.” The Boston Globe, 11 September 1994.

Zuckerman, Laurence.“BBN Steps Out of the Shadows and into the Limelight.” The NewYork Times, 17 July 1995.Edit

Unpublished Papers, Interviews from Secondary Sources, and Other Documents

”Act One.” Symposium on the history of the ARPANET held at the University of California at Los Angeles, 17 August 1989. Transcript.

ARPA Network Information Center, Stanford Research Institute, Menlo Park, Calif. “Scenarios for Using the ARPANET.” Booklet. Prepared for the International Conference on Computer Communication, Washington, D.C., October 1972.

Baran, Paul. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 5 March 1990.

Barlow, John Perry. “Crime and Puzzlement.” Pinedale, Wyo., June 1990.

BBN Systems and Technologies Corporation. “Annual Report of the Science Development Program.” Cambridge, Mass., 1988.

Bhushan, A. K. “Comments on the File Transfer Protocol.” Request for Comments 385. Stanford Research Institute, Menlo Park, Calif., August 1972.

———.“The File Transfer Protocol.” Request for Comments 354. Stanford Research Institute, Menlo Park, Calif., July 1972.

Bhushan, Abhay, Ken Pogran, Ray Tomlinson, and Jim White. “Standardizing Network Mail Headers.” Request for Comments 561. MIT, Cambridge, Mass., 5 September 1973.

Blue, Allan. Interview by William Aspray. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 12 June 1989.

Bolt Beranek and Newman Inc. “ARPANET Completion Report: Draft.” Cambridge, Mass., September 1977.

———.“BBN Proposal No. IMP P69-IST-5: Interface Message Processors for the ARPA Computer Network.” Design proposal. Submitted to the Department of the Army, Defense Supply Service, in response to RFQ No. DAHC15 69 Q 0002. Washington, D.C., 6 September 1968.

———. “BBN Report No. 1763: Initial Design for Interface Message Processors for the ARPA Computer Network.” Design proposal. Submitted to the Advanced Research Projects Agency under contract no. DAHC 15-69-C-0179. Washington, D.C., 6 January 1969.

———. “BBN Report No. 1822: Interface Message Processor.” Technical report. Cambridge, Mass., 1969.

———.“Interface Message Processors for the ARPA Computer Network.” Quarterly technical reports. Submitted to the Advanced Research Projects Agency under contract no. DAHC 15-69-C-0179 and contract no. F08606-73-C-0027. Washington, D.C., 1969–1973.

———. “Operating Manual for Interface Message Processors: 516 IMP, 316 IMP, TEP.” Revised. Submitted to the Advanced Research Projects Agency under ARPA order no. 1260, contract no. DAHC15-69-C-0179. Arlington,Va., April 1973.

———. “Report No. 4799: A History of the ARPANET: The First Decade.” Submitted to the Defense Advanced Research Projects Agency. Arlington,Va., April 1981.

———.“The Four Cities Plan.” Draft proposal and cost analysis for maintenance of IMPs and TIPs in Boston, Washington, Los Angeles, and San Francisco. Papers of BBN Division 6. Cambridge, Mass., April 1974.

———. Internal memoranda and papers relating to the work of Division 6. Cambridge, Mass., 1971–1972.

Carr, C. Stephen, Stephen D. Crocker, and Vinton G. Cerf. “HOST-HOST Communication Protocol in the ARPA Network.” Paper presented at the Spring Joint Computer Conference of the American Federation of Information Processing Societies, 1970.

Catton, Major General, USAF, Jack. Letter to F. R. Collbohm of RAND Corporation, 11 October 1965. Referring the preliminary technical development plan for message-block network to the Defense Communications Agency.

Cerf,Vinton G.“Confessions of a Hearing-Impaired Engineer.” Unpublished.

———.“PARRY Encounters the Doctor.” Request for Comments 439 (NIC 13771). Network Working Group, 21 January 1973.

Cerf, Vinton G., and Jonathan B. Postel. “Specification of Internetwork Transmission Control Protocol: TCP Version 3.” Information Sciences Institute, University of Southern California, January 1978.

Cerf, Vinton G. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/ IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 24 April 1990.

Cerf, Vinton G., and Robert Kahn. “HOST and PROCESS Level Protocols for Internetwork Communication.” Notes of the International Network Working Group 39, 13 September 1973.

Clark, Wesley. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 3 May 1990.

Crocker, David H. “Standard for the Format of ARPA Internet Text Messages.” Request for Comments 822. Department of Electrical Engineering, University of Delaware, 13 August 1982.

Crocker, David H., John J. Vittal, Kenneth T. Pogran, and D. Austin Henderson Jr. “Standard for the Format of ARPA Network Text Messages.” Request for Comments 733. The RAND Corporation, Santa Monica, Calif., 21 November 1977.

Crowther, William. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 12 March 1990.

Crowther, William, and David Walden. “CurrentViews of Timing.” Memorandum to Frank E. Heart, Cambridge, Mass., 8 July 1969.

Davies, Donald W. “Further Speculations on Data Transmission.” Private papers. London, 16 November 1965.

———.“Proposal for a Digital Communication Network.” Private papers, photocopied and widely circulated. London, June 1966.

———. “Proposal for the Development of a National Communications Service for On-Line Data Processing.” Private papers. London, 15 December 1965.

———. “Remote On-line Data Processing and Its Communication Needs.” Private papers. London, 10 November 1965.

Davies, Donald W. Interview by Martin Campbell-Kelly. National Physical Laboratory, U.K., 17 March 1986.

Davies, Donald W., Keith Bartlett, Roger Scantlebury, and Peter Wilkinson. “A Digital Communications Network for Computers Giving Rapid Response at Remote Terminals.” Paper presented at the Association for Computing Machinery Symposium on Operating System Principles, Gatlinburg, Tenn., October 1967.

Davis, Ruth M. “Comments and Recommendations Concerning the ARPA Network.” Center for Computer Sciences and Technology, U.S. National Bureau of Standards, 6 October 1971.

Digital Equipment Corporation. “Interface Message Processors for the ARPA Computer Network.” Design proposal. Submitted to the Department of the Army, Defense Supply Service, in RFQ no. DAHC15 69 Q 002, 5 September 1968.

Frank, Howard. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 30 March 1990.

Goldstein, Paul. “The Proposed ARPANET Divestiture: Legal Questions and Economic Issues.” Working Paper, Cabledata Associates, Inc., CAWP no. 101, 27 July 1973.

Hauben, Michael, and Ronda Hauben. The Netizens Netbook page can be found at http://www.columbia.edu/∼hauben/netbook/. The Haubens’ work has also appeared in the Amateur Computerist Newsletter, available from ftp://wuarchive.wustl.edu/doc/misc/acn/.

Heart, F. E., R. E. Kahn, S. M. Ornstein, W. R. Crowther, and D. C. Walden. “The Interface Message Processor for the ARPA Computer Network.” Paper presented at the Spring Joint Computer Conference of the American Federation of Information Processing Societies, 1970.

Heart, Frank E. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 13 March 1990.

Herzfeld, Charles. Interview by Arthur Norberg. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 6 August 1990.

Honeywell, Inc. “Honeywell at Bolt Beranek and Newman, Inc.” Brochure. Published for the ARPA Network demonstration at the International Conference on Computer Communication, Washington, D.C., October 1972.

Information Sciences Institute, University of Southern California. “DOD Standard Transmission Control Protocol.” Request for Comments 761. Prepared for the Defense Advanced Research Projects Agency, Information Processing Techniques Office, Arlington,Va., January 1980.

International Data Corporation. “ARPA Computer Network Provides Communications Technology for Computer/Computer Interaction Within Special Research Community.” Industry report and market review. Newtonville, Mass., 3 March 1972.

Kahn, Robert. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 24 April 1990.

Kahn, Robert. Interview by William Aspray. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 22 March 1989.

Kleinrock, Leonard. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 3 April 1990.

Kryter, Karl D. “Lick as a Psychoacoustician and Physioacoustician.” Presentation honoring J. C. R. Licklider at the Meeting of the Acoustical Society of America, Baltimore, Md., 30 April 1991.

———. Obituary of J. C. R. Licklider, Journal of the Acoustical Society of America, December 1990.

Licklider, J. C. R., and Welden E. Clark. “On-Line Man-Computer Communication.” Paper presented at the Spring Joint Computer Conference of the American Federation of Information Processing Societies, 1962.

Licklider, J. C. R. Interview by William Aspray. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 28 October 1988.

Lukasik, Stephen. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 17 October 1991.

Marill, Thomas, and Lawrence G. Roberts. “Toward a Cooperative Network of Time-Shared Computers.” Paper presented at the Fall Joint Computer Conference of the American Federation of Information Processing Societies, 1966.

McCarthy, J., S. Boilen, E. Fredkin, and J. C. R. Licklider. “A Time-Sharing Debugging System for a Small Computer.” Paper presented at the Spring Joint Computer Conference of the American Federation of Information Processing Societies, 1963.

McKenzie, Alexander A. “The ARPA Network Control Center.” Paper presented at the Fourth Data Communications Symposium of the Institute for Electrical and Electronics Engineers, October 1975.

McKenzie, Alexander A. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 13 March 1990.

Message Group. The full text of more than 2,600 e-mail messages sent by members of the Message Group (or MsgGroup), one of the first electronic mailing lists, relating to the development of e-mail. The Computer Museum, Boston, Mass., June 1975–June 1986. Electronic document. (http://www.tcm.org/msgroup)

Metcalfe, Robert. “Some Historic Moments in Networking.” Request for Comments 89. Network Working Group, 19 January 1971.

Myer, T. H., and D. A. Henderson. “Message Transmission Protocol.” Request for Comments 680. Stanford Research Institute, Menlo Park, Calif., 1975.

National Research Council, Commission on Engineering and Technical Systems. “Transport Protocols for Department of Defense Data Networks.” Report to the Department of Defense and the National Bureau of Standards, Board on Telecommunication and Computer Applications, 1985.

Neigus, N.J. “File Transfer Protocol.” Request for Comments 542. Bolt Beranek and Newman Inc., Cambridge, Mass., 12 July 1973.

Norberg, Arthur L., and Judy E. O’Neill. “A History of the Information Processing Techniques Office of the Defense Advanced Research Projects Agency.” Charles Babbage Institute, University of Minnesota, Minneapolis, Minn., 1992.

Ornstein, Severo M., F. E. Heart, W. R. Crowther, H. K. Rising, S. B. Russell, and A. Michel. “The Terminal IMP for the ARPA Network.” Paper presented at the Spring Joint Computer Conference of the American Federation of Information Processing Societies, Atlantic City, N.J., May 1972.

Ornstein, Severo. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 6 March 1990.

Pogran, Ken, John Vittal, Dave Crowther, and Austin Henderson. “Proposed Official Standard for the Format of ARPA Network Messages.” Request for Comments 724. MIT, Cambridge, Mass., 12 May 1977.

Postel, Jonathan B. “Simple Mail Transfer Protocol.” Request for Comments 821. Information Sciences Institute, University of Southern California, August 1982.

———. “Specification of Internetwork Transmission Control Protocol: TCP Version 4.” Information Sciences Institute, University of Southern California, September 1978.

———. “TCP and IP Bake Off.” Request for Comments 1025. Network Working Group, September 1987.

Pouzin, Louis. “Network Protocols.” Notes of the International Network Working Group 50, September 1973.

———.“Presentation and Major Design Aspects of the Cyclades Computer Network.” Paper presented at the IEEE Third Data Communications Symposium (Data Networks: Analysis and Design), November 1973.

———. “Experimental Communication Protocol: Basic Message Frame.” Notes of the International Network Working Group 48, January 1974.

———.“Interconnection of Packet Switching Networks.” Notes of the International Network Working Group 42, October 1973.

———. “Network Architecture and Components.” Notes of the International Network Working Group 49, August 1973.

RAND Corporation. “Development of the Distributed Adaptive Message-Block Network.” Recommendation to the Air Staff, 30 August 1965.

RCA Service Company, Government Services Division. “ARPANET Study Final Report.” Submitted under contract no. F08606-73-C-0018. 24 November 1972.

Richard J. Barber Associates, Inc. “The Advanced Research Projects Agency: 1958–1974.” A study for the Advanced Research Projects Agency under contract no. MDA-903-74-C-0096. Washington, D.C., December 1975. Photocopy.

Roberts, Lawrence G. “Extensions of Packet Communications Technology to a Hand-Held Personal Terminal.” Paper presented at the Spring Joint Computer Conference of the American Federation of Information Processing Societies, May 1972.

———. “Multiple Computer Networks and Intercomputer Communication.” Paper presented at the Association for Computing Machinery Symposium on Operating System Principles, October 1967.

Roberts, Lawrence G., and Barry D. Wessler. “Computer Network Development to Achieve Resource Sharing.” Paper presented at the Spring Joint Computer Conference of the American Federation of Information Processing Societies, 1970.

Roberts, Lawrence G. Interview by Arthur Norberg. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 4 April 1989.

Ruina, Jack. Interview by William Aspray. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 20 April 1989.

Sutherland, Ivan. Interview by William Aspray. Charles Babbage Institute DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 1 May 1989.

Taylor, Robert. Interview by William Aspray. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 28 February 1989.

U.S. Postal Service. “Electronic Message Systems for the U.S. Postal Service.” Report of the U.S.P.S. Support Panel, Committee on Telecommunications, Washington, D.C., January 1977.

Walden, David C. “Experiences in Building, Operating, and Using the ARPA Network.” Paper presented at the Second USA-Japan Computer Conference, Tokyo, Japan, August 1975.

Walden, David. Interview by Judy O’Neill. Charles Babbage Institute, DARPA/IPTO Oral History Collection, University of Minnesota Center for the History of Information Processing, Minneapolis, Minn., 6 February 1990.

Walker, Stephen T. “Completion Report: ARPA Network Development.” Defense Advanced Research Projects Agency, Information Processing Techniques Office, Washington, D.C., 4 January 1978.

Weik, Martin H. “A Third Survey of Domestic Electronic Digital Computing Systems.” Ballistic Research Laboratories, report no. 1115, March 1961.

White, Jim. “Proposed Mail Protocol.” Request for Comments 524. Stanford Research Institute, Menlo Park, Calif., 13 June 1973.

Zimmermann, H., and M. Elie. “Proposed Standard Host-Host Protocol for Heterogeneous Computer Networks: Transport Protocol.” Notes of the International Network Working Group 43, December 1973.Edit

Electronic Archives

Charles Babbage Institute, Center for the History of Information Processing, University of Minnesota. Large archival collection relating to the history of computing. More information can be obtained via the CBI Web site at http://cbi.itdean.umn.edu/cbi/welcome.html or via e-mail addressed to [email protected].

Computer Museum, Boston, Massachusetts. Large collection relating to the history of computing, including the archives of the Message Group concerning the early development of e-mail. The archive is available via the homepage at http://www.tcm.org/msgroup.

Information Sciences Institute, University of Southern California. Collection includes up-to-date indexes and tests of Internet standards, protocols, Requests for Comments (RFCs), and various other technical notes available via the ISI Web site: http://www.isi.edu. Some of the earlier RFCs are not available electronically, but are archived off-line in meticulous fashion by RFC editor Jon Postel. A searchable archive is maintained at http://info.internet.isi.edu:80/in-notes/rfc.

Ohio State University, Department of Computer and Information Science. The CIS Web Server offers access to RFCs and various other technical and historical documents related to the Internet via http://www.cis. ohio-state.edu:80/hypertext/information/rfc.html.

Primary Fair Use Source: B000FC0WP6

Secondary Fair Use Sources:

Categories
Artificial Intelligence Bibliography Cloud Data Science - Big Data Hardware and Electronics History Linux Networking Operating Systems Software Engineering

Where Wizards Stay Up Late – The Origins Of The Internet

Return to Timeline of the History of Computers or History

Fair Use Source: B000FC0WP6

Where Wizards Stay Up Late – The Origins Of The Internet by Matthew Lyon and Katie Hafner

by Matthew Lyon and Katie Hafner

“Twenty five years ago, it didn’t exist. Today, twenty million people worldwide are surfing the Net. Where Wizards Stay Up Late is the exciting story of the pioneers responsible for creating the most talked about, most influential, and most far-reaching communications breakthrough since the invention of the telephone.”

“In the 1960’s, when computers where regarded as mere giant calculators, J.C.R. Licklider at MIT saw them as the ultimate communications devices. With Defense Department funds, he and a band of visionary computer whizzes began work on a nationwide, interlocking network of computers. Taking readers behind the scenes, Where Wizards Stay Up Late captures the hard work, genius, and happy accidents of their daring, stunningly successful venture.”Edit

Book Details

  • Print length: 304 pages
  • Publication date: August 19, 1999
  • ASIN: B000FC0WP6
  • Publisher: Simon & Schuster
  • ISBN: 0684832674

Table of Contents

  • Prologue
  • 1. The Fastest Million Dollars
  • 2. A Block Here, Some Stones There
  • 3. The Third University
  • 4. Head Down in the Bits
  • 5. Do It to It Truett
  • 6. Hacking Away and Hollering
  • 7. E-Mail
  • 8. A Rocket on Our Hands
  • Epilogue
  • Chapter Notes
  • Bibliography
  • Acknowledgments
  • Index

Dedication

To the memory of J. C. R. Licklider and to the memory of Cary Lu

Los Alamos’ lights where wizards stay up late, (Stay in the car, forget the gate), To save the world or end it, time will tell” — James Merrill, “Under Libra: Weights and Measures

Fair Use Sources:

Categories
Artificial Intelligence AWS Azure Cloud Data Science - Big Data DevOps DevSecOps-Security-Privacy GCP Hardware and Electronics Kubernetes Linux Networking Operating Systems PowerShell Python Software Engineering Windows Server

IaC Infrastructure as Code

Return to Timeline of the History of Computers, Networking

Infrastructure as code (IaC) is the process of managing and provisioning computer data centers through machine-readable definition files, rather than physical hardware configuration or interactive configuration tools.[1] The IT infrastructure managed by this process comprises both physical equipment, such as bare-metal servers, as well as virtual machines, and associated configuration resources. The definitions may be in a version control system. It can use either scripts or declarative definitions, rather than manual processes, but the term is more often used to promote declarative approaches.

Overview

IaC grew as a response to the difficulty posed by utility computing and second-generation web frameworks. In 2006, the launch of Amazon Web Services’ Elastic Compute Cloud and the 1.0 version of Ruby on Rails just months before[2] created widespread scaling problems in the enterprise that were previously experienced only at large, multi-national companies.[3] With new tools emerging to handle this ever growing field, the idea of IaC was born. The thought of modelling infrastructure with code, and then having the ability to design, implement, and deploy applications infrastructure with known software best practices appealed to both software developers and IT infrastructure administrators. The ability to treat infrastructure like code and use the same tools as any other software project would allow developers to rapidly deploy applications.[4]

Added value and advantages

The value of IaC can be broken down into three measurable categories: cost, speed, and risk.[citation needed] Cost reduction aims at helping not only the enterprise financially, but also in terms of people and effort, meaning that by removing the manual component, people are able to refocus their efforts towards other enterprise tasks.[citation needed] Infrastructure automation enables speed through faster execution when configuring your infrastructure and aims at providing visibility to help other teams across the enterprise work quickly and more efficiently. Automation removes the risk associated with human error, like manual misconfiguration; removing this can decrease downtime and increase reliability. These outcomes and attributes help the enterprise move towards implementing a culture of DevOps, the combined working of development and operations.[5]

Types of approaches

There are generally two approaches to IaC: declarative (functional) vs. imperative (procedural). The difference between the declarative and the imperative approach is essentially ‘what’ versus ‘how’ . The declarative approach focuses on what the eventual target configuration should be; the imperative focuses on how the infrastructure is to be changed to meet this.[6] The declarative approach defines the desired state and the system executes what needs to happen to achieve that desired state. Imperative defines specific commands that need to be executed in the appropriate order to end with the desired conclusion. [7]

Methods

There are two methods of IaC: push‘ and pull‘ . The main difference is the manner in which the servers are told how to be configured. In the pull method the server to be configured will pull its configuration from the controlling server. In the push method the controlling server pushes the configuration to the destination system.[8]

Tools

There are many tools that fulfill infrastructure automation capabilities and use IaC. Broadly speaking, any framework or tool that performs changes or configures infrastructure declaratively or imperatively based on a programmatic approach can be considered IaC.[9] Traditionally, server (lifecycle) automation and configuration management tools were used to accomplish IaC. Now enterprises are also using continuous configuration automation tools or stand-alone IaC frameworks, such as Microsoft’s PowerShell DSC[10] or AWS CloudFormation.[11]

Continuous configuration automation

All continuous configuration automation (CCA) tools can be thought of as an extension of traditional IaC frameworks. They leverage IaC to change, configure, and automate infrastructure, and they also provide visibility, efficiency and flexibility in how infrastructure is managed.[3] These additional attributes provide enterprise-level security and compliance.

Community content

See also: List of systems management systems and Comparison of open-source configuration management software

An important aspect when considering CCA tools, if they are open source, is the community content. As Gartner states, the value of CCA tools is “as dependent on user-community-contributed content and support as it is on the commercial maturity and performance of the automation tooling.”[3] Vendors like Puppet and Chef, those that have been around a significant amount of time, have created their own communities. Chef has Chef Community Repository and Puppet has PuppetForge.[12] Other vendors rely on adjacent communities and leverage other IaC frameworks such as PowerShell DSC.[10] New vendors are emerging that are not content driven, but model driven with the intelligence in the product to deliver content. These visual, object-oriented systems work well for developers, but they are especially useful to production oriented DevOps and operations constituents that value models versus scripting for content. As the field continues to develop and change, the community based content will become ever important to how IaC tools are used, unless they are model driven and object oriented.

Notable CCA tools include:

ToolReleased byMethodApproachWritten inComments
ChefChef (2009)PullDeclarative and imperativeRuby
OtterInedoPushDeclarative and imperativeWindows oriented
PuppetPuppet (2005)PullDeclarative and imperativeC++ & Clojure since 4.0, Ruby
SaltStackSaltStackPush and PullDeclarative and imperativePython
CFEngineNorthern.techPullDeclarativeC
TerraformHashiCorp (2014)PushDeclarativeGo
Ansible / Ansible TowerRed Hat (2012)PushDeclarative and imperativePython

Other tools include AWS CloudFormationcdistStackStormJuju, and Pulumi.

Relationship to DevOps

IaC can be a key attribute of enabling best practices in DevOps – Developers become more involved in defining configuration and Ops teams get involved earlier in the development process.[13] Tools that utilize IaC bring visibility to the state and configuration of servers and ultimately provide the visibility to users within the enterprise, aiming to bring teams together to maximize their efforts.[14] Automation in general aims to take the confusion and error-prone aspect of manual processes and make it more efficient, and productive. Allowing for better software and applications to be created with flexibility, less downtime, and an overall cost effective way for the company. IaC is intended to reduce the complexity that kills efficiency out of manual configuration. Automation and collaboration are considered central points in DevOps; Infrastructure automation tools are often included as components of a DevOps toolchain.[15]

Relationship to security

The 2020 Cloud Threat Report released by Unit 42 (the threat intelligence unit of cybersecurity provider Palo Alto Networks) identified around 200,000 potential vulnerabilities in infrastructure as code templates.[16]

See also

References

  1. ^ Wittig, Andreas; Wittig, Michael (2016). Amazon Web Services in Action. Manning Press. p. 93. ISBN 978-1-61729-288-0.
  2. ^ Bower, Joseph L.; Christensen, Clayton M. “Disruptive Technologies: Catching the Wave”. Harvard Business Review.
  3. a b c Fletcher, Colin; Cosgrove, Terrence (26 August 2015). Innovation Insight for Continuous Configuration Automation ToolsGartner (Report).
  4. ^ Riley, Chris (12 November 2015). “Version Your Infrastructure”DevOps.com.
  5. ^ Phillips, Andrew (14 May 2015). “Moving from Infrastructure Automation to True DevOps”DevOps.com.
  6. ^ “Declarative v. Imperative Models for Configuration Management: Which Is Really Better?”Scriptrock.com. Retrieved 14 December 2015.
  7. ^ Loschwitz, Martin (14 November 2014). “Choosing between the leading open source configuration managers”Admin Network & Security. Lawrence, KS USA: Linux New Media USA LLC.
  8. ^ Venezia, Paul (21 November 2013). “Puppet vs. Chef vs. Ansible vs. Salt”networkworld.com. Network World. Retrieved 14 December 2015.
  9. ^ Garner Market Trends: DevOps – Not a Market, but Tool-Centric Philosophy That supports a Continuous Delivery Value Chain (Report). Gartner. 18 February 2015.
  10. a b Chaganti, Ravikanth (5 January 2016). “DevOps, Infrastructure as Code, and PowerShell DSC: The Introduction”PowerShell Magazine. PowerShell Magazine. Retrieved 11 January 2016.
  11. ^ https://aws.amazon.com/about-aws/whats-new/2011/02/25/introducing-aws-cloudformation/
  12. ^ Sturgeon, Phil (28 October 2012). “Puppet or Chef?”.
  13. ^ Ramos, Martin (4 November 2015). “Continuous Integration: Infrastructure as Code in DevOps”easydynamics.com. Archived from the original on 6 February 2016. Retrieved 29 January 2016.
  14. ^ Infrastructure As Code: Fueling the Fire for Faster Application Delivery (Report). Forrester. March 2015.
  15. ^ Wurster, Laurie F.; Colville, Ronni J.; Height, Cameron; Tripathi, Somendra; Rastogi, Aditi. Emerging Technology Analysis: DevOps a Culture Shift, Not a Technology (Report). Gartner.
  16. ^ “Cloud Threat Report Shows Need for Consistent DevSecOps”InformationWeek. Retrieved 24 February 2020.

Categories

Fair Use Sources:

Categories
Cloud DevOps DevSecOps-Security-Privacy Hardware and Electronics History Networking Software Engineering

Reliability Engineering

Return to Timeline of the History of Computers, Networking

Reliability engineering is a sub-discipline of systems engineering that emphasizes the ability of equipment to function without failure. Reliability describes the ability of a system or component to function under stated conditions for a specified period of time.[1] Reliability is closely related to availability, which is typically described as the ability of a component or system to function at a specified moment or interval of time.

The Reliability function is theoretically defined as the probability of success at time t, which is denoted R(t). This probability is estimated from previous data sets or through reliability testing. AvailabilityTestabilitymaintainability and maintenance are often defined as a part of “reliability engineering” in reliability programs. Reliability can play a key role in the cost-effectiveness of systems; for example, a consumer product in many cases will have a higher resale value, if it fails less often.

Reliability and quality are closely related. Normally quality focuses on the prevention of defects during the warranty phase whereas reliability looks at preventing failures during the useful lifetime of the product or system from commissioning, through operation, to decommissioning [2].

Reliability engineering deals with the prediction, prevention and management of high levels of “lifetime” engineering uncertainty and risks of failure. Although stochastic parameters define and affect reliability, reliability is not only achieved by mathematics and statistics.[3][4] Reliability engineering can be achieved through process and reliability testing. “Nearly all teaching and literature on the subject emphasize these aspects, and ignore the reality that the ranges of uncertainty involved largely invalidate quantitative methods for prediction and measurement.”[5] For example, it is easy to represent “probability of failure” as a symbol or value in an equation, but it is almost impossible to predict its true magnitude in practice, which is massively multivariate, so having the equation for reliability does not begin to equal having an accurate predictive measurement of reliability.

Reliability engineering relates closely to Quality Engineering, safety engineering and system safety, in that they use common methods for their analysis and may require input from each other. It can be said that a system must be reliably safe.

Reliability engineering focuses on costs of failure caused by system downtime, cost of spares, repair equipment, personnel, and cost of warranty claims.

Fair Use Sources:

Categories
Artificial Intelligence Cloud Data Science - Big Data DevOps DevSecOps-Security-Privacy Hardware and Electronics History Networking Software Engineering

Computer Science

Return to Timeline of the History of Computers, Networking

Computer science is the study of algorithmic processes and computational machines.[1][2] As a discipline, computer science spans a range of topics from theoretical studies of algorithmscomputation and information to the practical issues of implementing computing systems in hardware and software.[3][4] Computer science addresses any computational problems, especially information processes, such as controlcommunicationperceptionlearning, and intelligence.[5][6][7]

Its fields can be divided into theoretical and practical disciplines. For example, the theory of computation concerns abstract models of computation and general classes of problems that can be solved using them, while computer graphics and computational geometry emphasize more specific applications. Algorithmics have been called the heart of computer science.[8] Programming language theory considers approaches to the description of computational processes, while computer programming involves the use of them to create complex systemsComputer architecture describes construction of computer components and computer-controlled equipment. Artificial intelligence aims to synthesize goal-orientated processes such as problem-solving, decision-making, environmental adaptation, planning and learning found in humans and animals. According to Peter Denning, the fundamental question underlying computer science is, “What can be automated?”.[9][5] Unlike other computing paradigms, computer scientists are focused on academic research.

Fair Use Sources:

Categories
Artificial Intelligence Cloud Data Science - Big Data DevOps Hardware and Electronics History Networking Software Engineering

Computer Scientist

Return to Timeline of the History of Computers, Networking

computer scientist is a person who has acquired the knowledge of computer science, the study of the theoretical foundations of information and computation and their application.[1]

Computer scientists typically work on the theoretical side of computer systems, as opposed to the hardware side on which computer engineers mainly focus (although there is overlap). Although computer scientists can also focus their work and research on specific areas (such as algorithm and data structure development and design, software engineeringinformation theorydatabase theorycomputational complexity theorynumerical analysisprogramming language theorycomputer graphics, and computer vision), their foundation is the theoretical study of computing from which these other fields derive.[2]

A primary goal of computer scientists is to develop or validate models, often mathematical, to describe the properties of computer-based systems (processors, programs, computers interacting with people, computers interacting with other computers, etc.) with an overall objective of discovering designs that yield useful benefits (faster, smaller, cheaper, more precise, etc.).

Fair Use Sources:

Categories
Cloud DevOps Hardware and Electronics History Networking

System Administrator SysAdmin

Return to Timeline of the History of Computers, Networking

system administrator, or sysadmin, is a person who is responsible for the upkeep, configuration, and reliable operation of computer systems; especially multi-user computers, such as servers. The system administrator seeks to ensure that the uptimeperformanceresources, and security of the computers they manage meet the needs of the users, without exceeding a set budget when doing so.

To meet these needs, a system administrator may acquire, install, or upgrade computer components and software; provide routine automation; maintain security policies; troubleshoot; train or supervise staff; or offer technical support for projects.

Fair Use Sources:

Categories
Hardware and Electronics History Networking

VoIP Voice over Internet Protocol – Broadband Phone – Internet Telephone

Return to Timeline of the History of Computers

Fair Use Sources:

Categories
Hardware and Electronics History Networking

Sharp Corporation

Return to Timeline of the History of Computers

Sharp Corporation (シャープ株式会社, Shāpu Kabushiki-gaisha) is a Japanese multinational corporation that designs and manufactures electronic products, headquartered in Sakai-ku, SakaiOsaka Prefecture. Since 2016 it has been majority owned by the Taiwan-based Foxconn Group.[4][5][6] Sharp employs more than 50,000 people worldwide. The company was founded in September 1912 in Tokyo and takes its name from one of its founder’s first inventions, the Ever-Sharp mechanical pencil, which was invented by Tokuji Hayakawa in 1915.

Fair Use Sources:

Categories
Hardware and Electronics History

Tandy RadioShack TRS-80 Computer (Model I)

Return to Timeline of the History of Computers or History

Tandy/RadioShack TRS-80 Model I[note 1]

The TRS-80 Micro Computer System (TRS-80, later renamed the Model I to distinguish it from successors) is a desktop microcomputer launched in 1977 and sold by Tandy Corporation through their RadioShack stores. The name is an abbreviation of Tandy/RadioShack, Z80 microprocessor.[3] It is one of the earliest mass-produced and mass-marketed retail home computers.[4]

The TRS-80 has a full-stroke QWERTY keyboard, the Zilog Z80 processor (rather than the more common Intel 8080), 4 KB DRAM standard memory (when many 8-bit computers shipped with only 1 KB RAM), small size and desk footprint, floating-point Level I BASIC language interpreter in ROM, 64-character per line video monitor, and a starting price of US$600[1] (equivalent to US$2500 in 2019).

A cassette tape drive for program storage was included in the original base package, but it proved slow and fiddly in practice. While the software environment was stable and capable, the fiddly program load/save process combined with keyboard bounce issues and a troublesome expansion interface contributed to the Model I’s widespread reputation as something fun to tinker with for computer enthusiasts, but not well suited to serious use. As with many small computers of the era, it lacked full support for the ASCII character set, e.g. no lowercase letters, which also hampered business adoption.

An extensive line of upgrades and add-on hardware peripherals for the TRS-80 was developed and marketed by Tandy/RadioShack. The basic system can be expanded with up to 48 KB of RAM (in 16 KB increments), and up to four floppy disk drives and/or hard disk drives. Tandy/RadioShack provided full-service support including upgrade, repair, and training services in their thousands of stores worldwide.

By 1979, the TRS-80 had the largest selection of software in the microcomputer market.[5] Until 1982, the TRS-80 was the best-selling PC line, outselling the Apple II series by a factor of five according to one analysis.[3]

The TRS-80 Model I pictured alongside the Apple II and the Commodore PET 2001-8. These three computers constitute what Byte Magazine called the “1977 Trinity” of home computing.

In mid-1980, the broadly compatible TRS-80 Model III was released. The Model I was discontinued shortly thereafter, primarily due to stricter FCC regulations on radio-frequency interference to nearby electronic devices.[6][7] In April 1983, the Model III was succeeded by the compatible TRS-80 Model 4.

Following the original Model I and its compatible descendants, the TRS-80 name later became a generic brand used on other technically unrelated computer lines sold by Tandy, including the TRS-80 Model IITRS-80 Model 2000TRS-80 Model 100TRS-80 Color Computer and TRS-80 Pocket Computer.

Fair Use Sources:

Categories
Hardware and Electronics History

Commodore PET Computer – 1977 AD

Return to Timeline of the History of Computers or History

Commodore 2001 Series-IMG 0448b.jpg
A Commodore PET 2001

The Commodore PET is a line of home/personal computers produced starting in 1977 by Commodore International.[3] The system combined a MOS 6502 microprocessorCommodore BASIC in read only memory (ROM), a keyboard, a computer monitor and (in early models) a cassette deck for data and program storage in a single all-in-one case.

Development of the system began in 1976 and a prototype was demonstrated in January 1977 at the Consumer Electronics Show (CES).[1][4] A series of problems meant that production versions did not begin to arrive until December 1977, by which time the TRS-80 and Apple II had already begun deliveries. The close release dates of the three machines led Byte Magazine to refer to them collectively as the “1977 trinity”.

The TRS-80 Model I pictured alongside the Apple II and the Commodore PET 2001-8. These three computers constitute what Byte Magazine called the “1977 Trinity” of home computing.

The original PET design underwent a series of significant updates, adding more memory, a better keyboard, larger screens and other modifications. The systems were a top-seller in the Canadian and United States educational markets, as well as European business uses. The PET formed the basis for Commodore’s entire 8-bit product line, including the Commodore 64.

The name was suggested by Andre Souson after he saw the Pet Rock in Los Gatos, and stated they were going to make the “pet computer”.[5] It was backronymed to Personal Electronic Transactor.

Fair Use Sources:

B07XVF5RSP